elementwise_mul¶
- paddle.fluid.layers.nn. elementwise_mul ( x, y, axis=- 1, act=None, name=None ) [source]
-
Elementwise Mul Operator.
Multiply two tensors element-wise
The equation is:
\(Out = X \\odot Y\)
$X$: a tensor of any dimension.
$Y$: a tensor whose dimensions must be less than or equal to the dimensions of $X$.
There are two cases for this operator:
The shape of $Y$ is the same with $X$.
The shape of $Y$ is a continuous subsequence of $X$.
For case 2:
Broadcast $Y$ to match the shape of $X$, where $axis$ is the start dimension index for broadcasting $Y$ onto $X$.
If $axis$ is -1 (default), $axis = rank(X) - rank(Y)$.
The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of subsequence, such as shape(Y) = (2, 1) => (2).
For example:
shape(X) = (2, 3, 4, 5), shape(Y) = (,) shape(X) = (2, 3, 4, 5), shape(Y) = (5,) shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2 shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1 shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0 shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
- Parameters
-
x (Tensor) – (Variable), Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
y (Tensor) – (Variable), Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
with_quant_attr (BOOLEAN) – Whether the operator has attributes used by quantization.
axis (int32, optional) – If X.dimension != Y.dimension, Y.dimension must be a subsequence of x.dimension. And axis is the start dimension index for broadcasting Y onto X.
act (string, optional) – Activation applied to the output. Default is None. Details: Activation Function
name (string, optional) – Name of the output. Default is None. It’s used to print debug info for developers. Details: Name
- Returns
-
N-dimension tensor. A location into which the result is stored. It’s dimension equals with x
- Return type
-
out (Tensor)
Examples
import paddle.fluid as fluid import numpy as np import paddle def gen_data(): return { "x": np.array([2, 3, 4]).astype('float32'), "y": np.array([1, 5, 2]).astype('float32') } paddle.enable_static() x = fluid.data(name="x", shape=[3], dtype='float32') y = fluid.data(name="y", shape=[3], dtype='float32') z = fluid.layers.elementwise_mul(x, y) # z = x * y place = fluid.CPUPlace() exe = fluid.Executor(place) z_value = exe.run(feed=gen_data(), fetch_list=[z.name]) print(z_value) # [2., 15., 8.]
import paddle.fluid as fluid import numpy as np import paddle def gen_data(): return { "x": np.ones((2, 3, 4, 5)).astype('float32'), "y": np.zeros((3, 4)).astype('float32') } paddle.enable_static() x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32') y = fluid.data(name="y", shape=[3,4], dtype='float32') z = fluid.layers.elementwise_mul(x, y, axis=1) # z = x * y place = fluid.CPUPlace() exe = fluid.Executor(place) z_value = exe.run(feed=gen_data(), fetch_list=[z.name]) print(z_value) # z.shape=[2,3,4,5]
import paddle.fluid as fluid import numpy as np import paddle def gen_data(): return { "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'), "y": np.random.randint(1, 5, size=[5]).astype('float32') } paddle.enable_static() x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32') y = fluid.data(name="y", shape=[5], dtype='float32') z = fluid.layers.elementwise_mul(x, y, axis=3) # z = x * y place = fluid.CPUPlace() exe = fluid.Executor(place) z_value = exe.run(feed=gen_data(), fetch_list=[z.name]) print(z_value) # z.shape=[2,3,4,5]