ResNet¶
- class paddle.vision.models. ResNet ( block, depth, num_classes=1000, with_pool=True ) [source]
-
ResNet model from “Deep Residual Learning for Image Recognition”
- Parameters
-
Block (BasicBlock|BottleneckBlock) – block module of model.
depth (int) – layers of resnet, default: 50.
num_classes (int) – output dim of last fc layer. If num_classes <=0, last fc layer will not be defined. Default: 1000.
with_pool (bool) – use pool before the last fc layer or not. Default: True.
Examples
from paddle.vision.models import ResNet from paddle.vision.models.resnet import BottleneckBlock, BasicBlock resnet50 = ResNet(BottleneckBlock, 50) resnet18 = ResNet(BasicBlock, 18)
-
forward
(
x
)
forward¶
-
Defines the computation performed at every call. Should be overridden by all subclasses.
- Parameters
-
*inputs (tuple) – unpacked tuple arguments
**kwargs (dict) – unpacked dict arguments