Precision¶
- class paddle.fluid.metrics. Precision ( name=None ) [source]
-
Precision (also called positive predictive value) is the fraction of relevant instances among the retrieved instances. Refer to https://en.wikipedia.org/wiki/Evaluation_of_binary_classifiers
Noted that this class manages the precision score only for binary classification task.
- Parameters
-
name (str, optional) – Metric name. For details, please refer to Name. Default is None.
Examples
import paddle.fluid as fluid import numpy as np metric = fluid.metrics.Precision() # generate the preds and labels preds = [[0.1], [0.7], [0.8], [0.9], [0.2], [0.2], [0.3], [0.5], [0.8], [0.6]] labels = [[0], [1], [1], [1], [1], [0], [0], [0], [0], [0]] preds = np.array(preds) labels = np.array(labels) metric.update(preds=preds, labels=labels) numpy_precision = metric.eval() print("expect precision: %.2f and got %.2f" % ( 3.0 / 5.0, numpy_precision))
-
update
(
preds,
labels
)
update¶
-
Update the precision based on the current mini-batch prediction results .
- Parameters
-
preds (numpy.ndarray) – prediction results of current mini-batch, the output of two-class sigmoid function. Shape: [batch_size, 1]. Dtype: ‘float64’ or ‘float32’.
labels (numpy.ndarray) – ground truth (labels) of current mini-batch, the shape should keep the same as preds. Shape: [batch_size, 1], Dtype: ‘int32’ or ‘int64’.
-
eval
(
)
eval¶
-
Calculate the final precision.
- Returns
-
Results of the calculated Precision. Scalar output with float dtype.
- Return type
-
float
-
get_config
(
)
get_config¶
-
Get the metric and current states. The states are the members who do not has “_” prefix.
- Parameters
-
None –
- Returns
-
a python dict, which contains the inner states of the metric instance
- Return types:
-
a python dict
-
reset
(
)
reset¶
-
reset function empties the evaluation memory for previous mini-batches.
- Parameters
-
None –
- Returns
-
None
- Return types:
-
None