image_resize¶
- paddle.fluid.layers.nn. image_resize ( input, out_shape=None, scale=None, name=None, resample='BILINEAR', actual_shape=None, align_corners=True, align_mode=1, data_format='NCHW' ) [source]
-
This op resizes a batch of images.
The input must be a 3-D Tensor of the shape (num_batches, channels, in_w) or a 4-D Tensor of the shape (num_batches, channels, in_h, in_w) or (num_batches, in_h, in_w, channels), or a 5-D Tensor of the shape (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels), and the resizing only applies on the three dimensions(depth, height and width).
Warning: the parameter
actual_shape
will be deprecated in the future and only useout_shape
instead.- Supporting resample methods:
-
‘LINEAR’ : Linear interpolation
‘BILINEAR’ : Bilinear interpolation
‘TRILINEAR’ : Trilinear interpolation
‘NEAREST’ : Nearest neighbor interpolation
‘BICUBIC’ : Bicubic interpolation
Linear interpolation is the method of using a line connecting two known quantities to determine the value of an unknown quantity between the two known quantities.
Nearest neighbor interpolation is to perform nearest neighbor interpolation in both the 3rd dimension(in height direction) and the 4th dimension(in width direction) on input tensor.
Bilinear interpolation is an extension of linear interpolation for interpolating functions of two variables (e.g. H-direction and W-direction in this op) on a rectilinear 2D grid. The key idea is to perform linear interpolation first in one direction, and then again in the other direction.
Trilinear interpolation is an extension of linear interpolation for interpolating functions of three variables (e.g. D-direction, H-direction and W-direction in this op) on a rectilinear 3D grid. The linear interpolation is performed on three directions.
Bicubic interpolation is an extension of cubic interpolation for interpolating data points on a two-dimensional regular grid. The interpolated surface is smoother than corresponding surfaces obtained by bilinear interpolation or nearest-neighbor interpolation.
Align_corners and align_mode are optional parameters,the calculation method of interpolation can be selected by them.
Example:
For scale: if align_corners = True && out_size > 1 : scale_factor = (in_size-1.0)/(out_size-1.0) else: scale_factor = float(in_size/out_size) Nearest neighbor interpolation: if: align_corners = False input : (N,C,H_in,W_in) output: (N,C,H_out,W_out) where: H_out = floor (H_{in} * scale_{factor}) W_out = floor (W_{in} * scale_{factor}) else: align_corners = True input : (N,C,H_in,W_in) output: (N,C,H_out,W_out) where: H_out = round(H_{in} * scale_{factor}) W_out = round(W_{in} * scale_{factor}) linear interpolation: if: align_corners = False , align_mode = 0 input : (N,C,W_in) output: (N,C,W_out) where: W_out = (W_{in}+0.5) * scale_{factor} - 0.5 else: input : (N,C,W_in) output: (N,C,H_out,W_out) where: W_out = W_{in} * scale_{factor} Bilinear interpolation: if: align_corners = False , align_mode = 0 input : (N,C,H_in,W_in) output: (N,C,H_out,W_out) where: H_out = (H_{in}+0.5) * scale_{factor} - 0.5 W_out = (W_{in}+0.5) * scale_{factor} - 0.5 else: input : (N,C,H_in,W_in) output: (N,C,H_out,W_out) where: H_out = H_{in} * scale_{factor} W_out = W_{in} * scale_{factor} Trilinear interpolation: if: align_corners = False , align_mode = 0 input : (N,C,D_in,H_in,W_in) output: (N,C,D_out,H_out,W_out) where: D_out = (D_{in}+0.5) * scale_{factor} - 0.5 H_out = (H_{in}+0.5) * scale_{factor} - 0.5 W_out = (W_{in}+0.5) * scale_{factor} - 0.5 else: input : (N,C,D_in,H_in,W_in) output: (N,C,D_out,H_out,W_out) where: D_out = D_{in} * scale_{factor} Trilinear interpolation: if: align_corners = False , align_mode = 0 input : (N,C,D_in,H_in,W_in) output: (N,C,D_out,H_out,W_out) where: D_out = (D_{in}+0.5) * scale_{factor} - 0.5 H_out = (H_{in}+0.5) * scale_{factor} - 0.5 W_out = (W_{in}+0.5) * scale_{factor} - 0.5 else: input : (N,C,D_in,H_in,W_in) output: (N,C,D_out,H_out,W_out) where: D_out = D_{in} * scale_{factor} H_out = H_{in} * scale_{factor} W_out = W_{in} * scale_{factor}
For details of linear interpolation, please refer to Wikipedia: https://en.wikipedia.org/wiki/Linear_interpolation.
For details of nearest neighbor interpolation, please refer to Wikipedia: https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
For details of bilinear interpolation, please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation.
For details of trilinear interpolation, please refer to Wikipedia: https://en.wikipedia.org/wiki/Trilinear_interpolation.
For details of bicubic interpolation, please refer to Wikipedia: https://en.wikipedia.org/wiki/Bicubic_interpolation
- Parameters
-
input (Variable) – 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8, its data format is specified by
data_format
.out_shape (list|tuple|Variable|None) – Output shape of image resize layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w) when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor. Default: None. If a list, each element can be an integer or a Tensor Variable of shape: [1]. If a Tensor Variable, its dimensions size should be a 1.
scale (float|Variable|None) – The multiplier for the input height or width. At least one of
out_shape
orscale
must be set. Andout_shape
has a higher priority thanscale
. Default: None.name (str|None) – A name for this layer(optional). If set None, the layer will be named automatically.
resample (str) – The resample method. It supports ‘LINEAR’, ‘BICUBIC’, ‘BILINEAR’, ‘TRILINEAR’ and ‘NEAREST’ currently. Default: ‘BILINEAR’
actual_shape (Variable) – An optional input to specify output shape dynamically. If provided, image resize according to this given shape rather than
out_shape
andscale
specifying shape. That is to say actual_shape has the highest priority. It is recommended to useout_shape
if you want to specify output shape dynamically, becauseactual_shape
will be deprecated. When using actual_shape to specify output shape, one ofout_shape
andscale
should also be set, otherwise errors would be occurred in graph constructing stage. Default: Nonealign_corners (bool) – An optional bool, If True, the centers of the 4 corner pixels of the input and output tensors are aligned, preserving the values at the corner pixels. Default: True
align_mode (int) – An optional for linear/bilinear/trilinear interpolation. Refer to the fomula in the the example code above, it can be ‘0’ for src_idx = scale*(dst_indx+0.5)-0.5 , can be ‘1’ for src_idx = scale*dst_index.
data_format (str, optional) – Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from:NCW, NWC, “NCHW”, “NHWC”, “NCDHW”, “NDHWC”. The default is “NCHW”. When it is “NCHW”, the data is stored in the order of: [batch_size, input_channels, input_height, input_width]. When it is “NCHW”, the data is stored in the order of: [batch_size, input_channels, input_depth, input_height, input_width].
- Returns
-
A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels), A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels), or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
- Raises
-
TypeError – out_shape should be a list or tuple or Variable.
TypeError – actual_shape should either be Variable or None.
ValueError – The ‘resample’ of image_resize can only be ‘LINEAR’, ‘BILINEAR’, ‘TRILINEAR’, ‘BICUBIC’ or ‘NEAREST’ currently.
ValueError – ‘LINEAR’ only support 3-D tensor.
ValueError – ‘BICUBIC’, ‘BILINEAR’ and ‘NEAREST’ only support 4-D tensor.
ValueError – ‘TRILINEAR’ only support 5-D tensor.
ValueError – One of out_shape and scale must not be None.
ValueError – out_shape length should be 1 for input 3-D tensor.
ValueError – out_shape length should be 2 for input 4-D tensor.
ValueError – out_shape length should be 3 for input 5-D tensor.
ValueError – scale should be greater than zero.
TypeError – align_corners should be a bool value
ValueError – align_mode can only be ‘0’ or ‘1’
ValueError – data_format can only be ‘NCW’, ‘NWC’, ‘NCHW’, ‘NHWC’, ‘NCDHW’ or ‘NDHWC’.
Examples
#declarative mode import paddle import paddle.fluid as fluid import numpy as np paddle.enable_static() input = fluid.data(name="input", shape=[None,3,6,10]) #1 output = fluid.layers.image_resize(input=input,out_shape=[12,12]) #2 #x = np.array([2]).astype("int32") #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32") #fluid.layers.assign(input=x, output=dim1) #output = fluid.layers.image_resize(input=input,out_shape=[12,dim1]) #3 #x = np.array([3,12]).astype("int32") #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32") #fluid.layers.assign(input=x, output=shape_tensor) #output = fluid.layers.image_resize(input=input,out_shape=shape_tensor) #4 #x = np.array([0.5]).astype("float32") #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32") #fluid.layers.assign(x,scale_tensor) #output = fluid.layers.image_resize(input=input,scale=scale_tensor) place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) input_data = np.random.rand(2,3,6,10).astype("float32") output_data = exe.run(fluid.default_main_program(), feed={"input":input_data}, fetch_list=[output], return_numpy=True) print(output_data[0].shape) #1 # (2, 3, 12, 12) #2 # (2, 3, 12, 2) #3 # (2, 3, 3, 12) #4 # (2, 3, 3, 5) #imperative mode import paddle.fluid.dygraph as dg with dg.guard(place) as g: input = dg.to_variable(input_data) output = fluid.layers.image_resize(input=input, out_shape=[12,12]) print(output.shape) # [2L, 3L, 12L, 12L]