InverseTimeDecay¶
- class paddle.fluid.dygraph.learning_rate_scheduler. InverseTimeDecay ( learning_rate, decay_steps, decay_rate, staircase=False, begin=0, step=1, dtype='float32' ) [source]
-
- Api_attr
-
imperative
Applies inverse time decay to the initial learning rate.
The algorithm can be described as following. If staircase is set to False, then:
\[\begin{split}decayed\_learning\_rate = \\frac{learning\_rate}{1 + decay\_rate * \\frac{global\_step}{decay\_step}}\end{split}\]If staircase is set to True, then:
\[\begin{split}decayed\_learning\_rate = \\frac{learning\_rate}{1 + decay\_rate * math.floor(\\frac{global\_step}{decay\_step})}\end{split}\]- Parameters
-
learning_rate (Variable|float) – The initial learning rate. If the type is Variable, it’s a tensor with shape [1], the data type can be float32 or float64. It also can be set to python int number.
decay_steps (int) – The decay step size. It determines the decay cycle.
decay_rate (float) – The decay rate.
staircase (bool, optional) – If set to True, decay the learning rate at discrete intervals. The default value is False.
begin (int, optional) – The begin step. The initial value of global_step described above. The default value is 0.
step (int, optional) – The step size used to calculate the new global_step in the description above. The default value is 1.
dtype (str, optional) – The data type used to create the learning rate variable. The data type can be ‘float32’, ‘float64’. The default value is ‘float32’.
- Returns
-
None.
Examples
import paddle.fluid as fluid base_lr = 0.1 with fluid.dygraph.guard(): emb = fluid.dygraph.Embedding([10, 10]) sgd_optimizer = fluid.optimizer.SGD( learning_rate=fluid.dygraph.InverseTimeDecay( learning_rate=base_lr, decay_steps=10000, decay_rate=0.5, staircase=True), parameter_list = emb.parameters())
-
create_lr_var
(
lr
)
create_lr_var¶
-
convert lr from float to variable
- Parameters
-
lr – learning rate
- Returns
-
learning rate variable
-
set_dict
(
state_dict
)
set_dict¶
-
Loads the schedulers state.
-
set_state_dict
(
state_dict
)
set_state_dict¶
-
Loads the schedulers state.
-
state_dict
(
)
state_dict¶
-
Returns the state of the scheduler as a
dict
.It is a subset of self.__dict__ .