pad¶
- paddle.fluid.layers.nn. pad ( x, paddings, pad_value=0.0, name=None ) [source]
-
- Alias_main
-
paddle.nn.functional.pad :alias: paddle.nn.functional.pad,paddle.nn.functional.common.pad :old_api: paddle.fluid.layers.pad
This op will pad a tensor with a constant value given by
pad_value
, and the padded shape is specified bypaddings
.Specifically, the number of values padded before the elements of
x
in dimensioni
is indicated bypaddings[2*i]
, and the number of values padded after the elements ofx
in dimensioni
is indicated bypaddings[2*i+1]
.See below for an example.
Given: x = [[1, 2], [3, 4]] paddings = [0, 1, 1, 2] pad_value = 0 Return: out = [[0, 1, 2, 0, 0] [0, 3, 4, 0, 0] [0, 0, 0, 0, 0]]
- Parameters
-
x (Variable) – Tensor, data type is float32.
paddings (list) – A list of integers. Its elements specify the padded width before and after each dimension in turn. The length of
paddings
must be equal to \(rank(x) \\times 2\).pad_value (float) – The constant value used to pad.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name
- Returns
-
The padded tensor, with the same data type and rank as
x
- Return Type:
-
Variable
Examples
# x is a rank 2 tensor variable import paddle.fluid as fluid x = fluid.data(name='data', shape=[300, 300], dtype='float32') out = fluid.layers.pad(x=x, paddings=[0, 1, 1, 2], pad_value=0.)