scale¶
- paddle. scale ( x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None ) [source]
-
Scale operator.
Putting scale and bias to the input Tensor as following:
bias_after_scale
is True:Out=scale∗X+biasbias_after_scale
is False:Out=scale∗(X+bias)- Parameters
-
x (Tensor) – Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
scale (float|Tensor) – The scale factor of the input, it should be a float number or a Tensor with shape [1] and data type as float32.
bias (float) – The bias to be put on the input.
bias_after_scale (bool) – Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
act (str, optional) – Activation applied to the output such as tanh, softmax, sigmoid, relu.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name
- Returns
-
Output tensor of scale operator, with shape and data type same as input.
- Return type
-
Tensor
Examples
# scale as a float32 number import paddle data = paddle.randn(shape=[2,3], dtype='float32') res = paddle.scale(data, scale=2.0, bias=1.0)
# scale with parameter scale as a Tensor import paddle data = paddle.randn(shape=[2, 3], dtype='float32') factor = paddle.to_tensor([2], dtype='float32') res = paddle.scale(data, scale=factor, bias=1.0)