shufflenet_v2_x1_5¶
- paddle.vision.models. shufflenet_v2_x1_5 ( pretrained=False, **kwargs ) [source]
-
ShuffleNetV2 with 1.5x output channels, as described in “ShuffleNet V2: Practical Guidelines for Ecient CNN Architecture Design”.
- Parameters
-
pretrained (bool, optional) – Whether to load pre-trained weights. If True, returns a model pre-trained on ImageNet. Default: False.
**kwargs (optional) – Additional keyword arguments. For details, please refer to ShuffleNetV2.
- Returns
-
Layer. An instance of ShuffleNetV2 with 1.5x output channels.
Examples
>>> import paddle >>> from paddle.vision.models import shufflenet_v2_x1_5 >>> # build model >>> model = shufflenet_v2_x1_5() >>> # build model and load imagenet pretrained weight >>> # model = shufflenet_v2_x1_5(pretrained=True) >>> x = paddle.rand([1, 3, 224, 224]) >>> out = model(x) >>> print(out.shape) [1, 1000]