save¶
- paddle.incubate.distributed.utils.io.dist_save. save ( state_dict, path, **configs ) [source]
-
Save a state dict to the specified path in both distributed and single-card environment.
Note
Now supports saving
state_dict
of Layer/Optimizer, Tensor and nested structure containing Tensor, Program.Note
Different from
paddle.jit.save
, since the save result ofpaddle.save
is a single file, there is no need to distinguish multiple saved files by adding a suffix. The argumentpath
ofpaddle.save
will be directly used as the saved file name instead of a prefix. In order to unify the saved file name format, we recommend using the paddle standard suffix: 1. forLayer.state_dict
, recommend to use.pdparams
; 2. forOptimizer.state_dict
, recommend to use.pdopt
. For specific examples, please refer to API code examples.- Parameters
-
obj (Object) – The object to be saved.
path (str|BytesIO) – The path/buffer of the object to be saved. If saved in the current directory, the input path string will be used as the file name.
protocol (int, optional) – The protocol version of pickle module must be greater than 1 and less than 5. Default: 4.
**configs (dict, optional) –
optional keyword arguments. The following options are currently supported:
-
- use_binary_format(bool):
-
To be used in paddle.save. When the saved object is static graph variable, you can specify
use_binary_for_var
. If True, save the file in the c++ binary format when saving a single static graph variable; otherwise, save it in pickle format. Default: False.
-
- gather_to(int|list|tuple|None):
-
To specify which global rank to save in.Defalut is None. None value means distributed saving with no gathering to a single card.
-
- state_type(str):
-
Value can be ‘params’ or ‘opt’, specifying to save parametres or optimizer state.
-
- max_grouped_size(str|int):
-
To limit the max size(how many bits) a object group to be transfered a time. If str, the format must be as num+’G/M/K’, for example, 3G, 2K, 10M, etc. Default is 3G.
-
- Returns
-
None
Examples
>>> >>> import paddle >>> paddle.distributed.init_process_group(backend='nccl') >>> paddle.distributed.fleet.init(is_collective=True) >>> model = build_model() >>> optimizer = build_optimizer(model) >>> dist_optimizer = paddle.distributed_optimizer(optimizer) >>> dist_model = paddle.distributed_optimizer(model) >>> # gather params to rank 0 and then save >>> paddle.incubate.distributed.utils.io.save(model.state_dict(), path="path/to/save.pdparams", gather_to=[0], state_type="params") >>> # save whoe params on all ranks >>> paddle.incubate.distributed.utils.io.save(model.state_dict(), path="path/to/save.pdparams", gather_to=[0,1], state_type="params") >>> # save optimizer state dict on rank 0 >>> paddle.incubate.distributed.utils.io.save(optimizer.state_dict(), path="path/to/save.pdopt", gather=0, state_type="opt")