ExpTransform¶
- class paddle.distribution. ExpTransform [source]
-
Exponent transformation with mapping \(y = \exp(x)\).
Examples
>>> import paddle >>> exp = paddle.distribution.ExpTransform() >>> print(exp.forward(paddle.to_tensor([1., 2., 3.]))) Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True, [2.71828175 , 7.38905621 , 20.08553696]) >>> print(exp.inverse(paddle.to_tensor([1., 2., 3.]))) Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True, [0. , 0.69314718, 1.09861231]) >>> print(exp.forward_log_det_jacobian(paddle.to_tensor([1., 2., 3.]))) Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True, [1., 2., 3.]) >>> print(exp.inverse_log_det_jacobian(paddle.to_tensor([1., 2., 3.]))) Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True, [ 0. , -0.69314718, -1.09861231])
-
forward
(
x
)
forward¶
-
Forward transformation with mapping \(y = f(x)\).
Useful for turning one random outcome into another.
- Parameters
-
x (Tensos) – Input parameter, generally is a sample generated from
Distribution
. - Returns
-
Outcome of forward transformation.
- Return type
-
Tensor
-
forward_log_det_jacobian
(
x
)
forward_log_det_jacobian¶
-
The log of the absolute value of the determinant of the matrix of all first-order partial derivatives of the inverse function.
- Parameters
-
x (Tensor) – Input tensor, generally is a sample generated from
Distribution
- Returns
-
The log of the absolute value of Jacobian determinant.
- Return type
-
Tensor
-
forward_shape
(
shape
)
forward_shape¶
-
Infer the shape of forward transformation.
- Parameters
-
shape (Sequence[int]) – The input shape.
- Returns
-
The output shape.
- Return type
-
Sequence[int]
-
inverse
(
y
)
inverse¶
-
Inverse transformation \(x = f^{-1}(y)\). It’s useful for “reversing” a transformation to compute one probability in terms of another.
- Parameters
-
y (Tensor) – Input parameter for inverse transformation.
- Returns
-
Outcome of inverse transform.
- Return type
-
Tensor
-
inverse_log_det_jacobian
(
y
)
inverse_log_det_jacobian¶
-
Compute \(log|det J_{f^{-1}}(y)|\). Note that
forward_log_det_jacobian
is the negative of this function, evaluated at \(f^{-1}(y)\).- Parameters
-
y (Tensor) – The input to the
inverse
Jacobian determinant evaluation. - Returns
-
The value of \(log|det J_{f^{-1}}(y)|\).
- Return type
-
Tensor
-
inverse_shape
(
shape
)
inverse_shape¶
-
Infer the shape of inverse transformation.
- Parameters
-
shape (Sequence[int]) – The input shape of inverse transformation.
- Returns
-
The output shape of inverse transformation.
- Return type
-
Sequence[int]
-
forward
(
x
)