IpuStrategy¶
- class paddle.static. IpuStrategy [source]
-
Help users precisely control the graph building in
paddle.static.IpuCompiledProgram
.- Returns
-
The IpuStrategy instance.
Examples
>>> >>> import paddle >>> import paddle.static as static >>> paddle.enable_static() >>> ipu_strategy = static.IpuStrategy()
-
register_patch
(
)
register_patch¶
-
Register patchs function to support dynamic to static on IPU. This operation would break the dy2static functionality on CPU. Use release_patch to release the patch.
Examples
>>> >>> import paddle >>> import paddle.static as static >>> ipu_strategy = static.IpuStrategy() >>> ipu_strategy.register_patch()
-
release_patch
(
)
release_patch¶
-
Release the registered IPU functions.
Examples
>>> >>> import paddle >>> import paddle.static as static >>> ipu_strategy = static.IpuStrategy() >>> ipu_strategy.release_patch()
-
set_optimizer
(
optimizer
)
set_optimizer¶
-
Set optimizer to ipu_strategy in dynamic mode.
- Args:
-
optimizer (Optimizer): Optimizer to be used in training.
- Returns:
-
None.
- Examples:
-
>>> >>> import paddle >>> import paddle.static as static >>> linear = paddle.nn.Linear(10, 10) >>> optimizer = paddle.optimizer.SGD(learning_rate=0.01, ... parameters=linear.parameters()) >>> ipu_strategy = static.IpuStrategy() >>> ipu_strategy.set_optimizer(optimizer)
-
parse_optimizer
(
optimizer
)
parse_optimizer¶
-
Parse optimizer attributes for IPU dynamic to static support. Currently only support parse lr.
- Args:
-
optimizer (Optimizer): Optimizer to be parsed.
- Returns:
-
Dict.
- Examples:
-
>>> >>> import paddle >>> import paddle.static as static >>> linear = paddle.nn.Linear(10, 10) >>> optimizer = paddle.optimizer.SGD(learning_rate=0.01, ... parameters=linear.parameters()) >>> ipu_strategy = static.IpuStrategy() >>> attrs = ipu_strategy.parse_optimizer(optimizer)
-
set_graph_config
(
num_ipus=1,
is_training=True,
micro_batch_size=1,
enable_manual_shard=False
)
set_graph_config¶
-
Set graph configuration to the IpuStrategy instance.
- Parameters
-
num_ipus (int, optional) – Number of IPU devices. Default 1, which means only use 1 IPU.
is_training (bool, optional) – True is training graph, False is inference graph. Default True, which means is training mode.
batch_size (int, optional) – The batch-size in the graph. Used to make the graph batch-size fixed, if the batch-size in the graph is dynamic. Default 1, which means the batch-size would be set 1, if the batch-size is dynamice.
enable_manual_shard (bool, optional) – Enable graph sharding or not. Only if num_ipus > 1, enable_manual_shard is able to be set True. Default False, which means disabled.
- Returns
-
None.
Examples
>>> >>> import paddle >>> import paddle.static as static >>> paddle.enable_static() >>> ipu_strategy = static.IpuStrategy() >>> ipu_strategy.set_graph_config(num_ipus=1, ... is_training=True, ... micro_batch_size=1, ... enable_manual_shard=False)
-
set_pipelining_config
(
enable_pipelining=False,
batches_per_step=1,
enable_gradient_accumulation=False,
accumulation_factor=1
)
set_pipelining_config¶
-
Set pipelining configuration to the IpuStrategy instance. Used to optimize the throughput performance.
- Parameters
-
enable_pipelining (bool, optional) – Enable data pipelining between subgraphs. Only if enable_manual_shard=True, enable_pipelining is able to be set True. Default False, which means disabled.
batches_per_step (int, optional) – Set the batches per run in data pipelining mode. Only if enable_pipelining=True, batches_per_step is able to be set > 1. Default 1, which means no data pipelining.
enable_gradient_accumulation (bool, optional) – Enable to accumulate gradients before updating the weights in training mode. Only if enable_pipelining=True, enable_gradient_accumulation is able to be set True. Default False, which means no gradient accumulation.
accumulation_factor (int, optional) – Specify the number of micro-batches to accumulate before applying the varUpdate. Default 1, which means disable the accumulation.
- Returns
-
None.
Examples
>>> >>> import paddle >>> import paddle.static as static >>> paddle.enable_static() >>> ipu_strategy = static.IpuStrategy() >>> ipu_strategy.set_pipelining_config(enable_pipelining=False, ... batches_per_step=1, ... enable_gradient_accumulation=False, ... accumulation_factor=1)
-
set_precision_config
(
enable_fp16=False
)
set_precision_config¶
-
Set half computation configuration to the IpuStrategy instance. Used to optimize the performance.
- Parameters
-
enable_fp16 (bool, optional) – Enable FLOAT16 mode and transform FLOAT32 to FLOAT16. Default False, which means disable FLOAT16 mode.
- Returns
-
None.
Examples
>>> >>> import paddle >>> import paddle.static as static >>> paddle.enable_static() >>> ipu_strategy = static.IpuStrategy() >>> ipu_strategy.set_precision_config(enable_fp16=False)
-
add_custom_op
(
paddle_op,
popart_op=None,
domain='custom.ops',
version=1
)
add_custom_op¶
-
Add a mapping to use popart custom ops running on the IPU.
- Parameters
-
paddle_op (str) – the name of custom op in paddle.
popart_op (str) – the name of custom op in popart.
domain (str) – domain name of custom op in popart.
version (int) – version of custom op in popart.
- Returns
-
None.
Examples
>>> >>> import paddle >>> import paddle.static as static >>> paddle.enable_static() >>> ipu_strategy = static.IpuStrategy() >>> ipu_strategy.add_custom_op('paddle_relu', 'popart_relu')
-
set_options
(
options
)
set_options¶
-
Set options from dict.
- Parameters
-
options (dict) – dict of options.
- Returns
-
None.
Examples
>>> >>> import paddle >>> import paddle.static as static >>> paddle.enable_static() >>> ipu_strategy = static.IpuStrategy() >>> options = {'num_ipus':1, 'enable_fp16': True} >>> ipu_strategy.set_options(options)
-
get_option
(
option
)
get_option¶
-
Get option.
- Parameters
-
option (str) – name of option.
- Returns
-
option value.
Examples
>>> >>> import paddle >>> import paddle.static as static >>> paddle.enable_static() >>> ipu_strategy = static.IpuStrategy() >>> num_ipus = ipu_strategy.get_option('num_ipus')
-
enable_pattern
(
pattern
)
enable_pattern¶
-
Enable PopART pattern to optimize the graph.
- Parameters
-
pattern (string) – the name of the pattern.
- Returns
-
None.
Examples
>>> >>> import paddle >>> import paddle.static as static >>> paddle.enable_static() >>> ipu_strategy = static.IpuStrategy() >>> ipu_strategy.enable_pattern("ViewSimplifyPattern")
-
disable_pattern
(
pattern
)
disable_pattern¶
-
Disable PopART pattern.
- Parameters
-
pattern (string) – the name of the pattern.
- Returns
-
None.
Examples
>>> >>> import paddle >>> import paddle.static as static >>> paddle.enable_static() >>> ipu_strategy = static.IpuStrategy() >>> ipu_strategy.disable_pattern("ViewSimplifyPattern")
- property num_ipus
-
Get the number of IPU devices from IpuStrategy instance.
- property is_training
-
Get the boolean of training or inference from IpuStrategy instance.
- property enable_pipelining
-
Get the boolean of enable pipelining or not from IpuStrategy instance.
- property enable_fp16
-
Get the boolean of float16 mode or not from IpuStrategy instance.