Transform¶
- class paddle.distribution. Transform [source]
-
Base class for the transformations of random variables.
Transform
can be used to represent any differentiable and injective function from the subset of \(R^n\) to subset of \(R^m\), generally used for transforming a random sample generated byDistribution
instance.Suppose \(X\) is a K-dimensional random variable with probability density function \(p_X(x)\). A new random variable \(Y = f(X)\) may be defined by transforming \(X\) with a suitably well-behaved function \(f\). It suffices for what follows to note that if f is one-to-one and its inverse \(f^{-1}\) have a well-defined Jacobian, then the density of \(Y\) is
\[p_Y(y) = p_X(f^{-1}(y)) |det J_{f^{-1}}(y)|\]where det is the matrix determinant operation and \(J_{f^{-1}}(y)\) is the Jacobian matrix of \(f^{-1}\) evaluated at \(y\). Taking \(x = f^{-1}(y)\), the Jacobian matrix is defined by
\[\begin{split}J(y) = \begin{bmatrix} {\frac{\partial x_1}{\partial y_1}} &{\frac{\partial x_1}{\partial y_2}} &{\cdots} &{\frac{\partial x_1}{\partial y_K}} \\ {\frac{\partial x_2}{\partial y_1}} &{\frac{\partial x_2} {\partial y_2}}&{\cdots} &{\frac{\partial x_2}{\partial y_K}} \\ {\vdots} &{\vdots} &{\ddots} &{\vdots}\\ {\frac{\partial x_K}{\partial y_1}} &{\frac{\partial x_K}{\partial y_2}} &{\cdots} &{\frac{\partial x_K}{\partial y_K}} \end{bmatrix}\end{split}\]A
Transform
can be characterized by three operations:forward Forward implements \(x \rightarrow f(x)\), and is used to convert one random outcome into another.
inverse Undoes the transformation \(y \rightarrow f^{-1}(y)\).
log_det_jacobian The log of the absolute value of the determinant of the matrix of all first-order partial derivatives of the inverse function.
Subclass typically implement follow methods:
_forward
_inverse
_forward_log_det_jacobian
_inverse_log_det_jacobian (optional)
If the transform changes the shape of the input, you must also implemented:
_forward_shape
_inverse_shape
-
forward
(
x
)
forward¶
-
Forward transformation with mapping \(y = f(x)\).
Useful for turning one random outcome into another.
- Parameters
-
x (Tensos) – Input parameter, generally is a sample generated from
Distribution
. - Returns
-
Outcome of forward transformation.
- Return type
-
Tensor
-
inverse
(
y
)
inverse¶
-
Inverse transformation \(x = f^{-1}(y)\). It’s useful for “reversing” a transformation to compute one probability in terms of another.
- Parameters
-
y (Tensor) – Input parameter for inverse transformation.
- Returns
-
Outcome of inverse transform.
- Return type
-
Tensor
-
forward_log_det_jacobian
(
x
)
forward_log_det_jacobian¶
-
The log of the absolute value of the determinant of the matrix of all first-order partial derivatives of the inverse function.
- Parameters
-
x (Tensor) – Input tensor, generally is a sample generated from
Distribution
- Returns
-
The log of the absolute value of Jacobian determinant.
- Return type
-
Tensor
-
inverse_log_det_jacobian
(
y
)
inverse_log_det_jacobian¶
-
Compute \(log|det J_{f^{-1}}(y)|\). Note that
forward_log_det_jacobian
is the negative of this function, evaluated at \(f^{-1}(y)\).- Parameters
-
y (Tensor) – The input to the
inverse
Jacobian determinant evaluation. - Returns
-
The value of \(log|det J_{f^{-1}}(y)|\).
- Return type
-
Tensor
-
forward_shape
(
shape
)
forward_shape¶
-
Infer the shape of forward transformation.
- Parameters
-
shape (Sequence[int]) – The input shape.
- Returns
-
The output shape.
- Return type
-
Sequence[int]
-
inverse_shape
(
shape
)
inverse_shape¶
-
Infer the shape of inverse transformation.
- Parameters
-
shape (Sequence[int]) – The input shape of inverse transformation.
- Returns
-
The output shape of inverse transformation.
- Return type
-
Sequence[int]