index_put_¶
- paddle. index_put_ ( x, indices, value, accumulate=False, name=None ) [source]
-
Puts values from the tensor values into the tensor x using the indices specified in indices (which is a tuple of Tensors). The expression paddle.index_put_(x, indices, values) is equivalent to tensor[indices] = values. Returns x. If accumulate is True, the elements in values are added to x. If accumulate is False, the behavior is undefined if indices contain duplicate elements.
- Parameters
-
x (Tensor) – The Source Tensor. Supported data types are int32, int64, float16, float32, float64, bool.
indices (Tuple of Tensor) – The tuple of Tensor containing the indices to index. The data type of
tensor in indices
must be int32, int64 or bool.value (Tensor) – The tensor used to be assigned to x.
accummulate (Bool, optional) – Whether the elements in values are added to x. Default: False.
name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
Tensor, same dimention and dtype with x.
Examples
>>> import paddle >>> x = paddle.zeros([3, 3]) >>> value = paddle.ones([3]) >>> ix1 = paddle.to_tensor([0,1,2]) >>> ix2 = paddle.to_tensor([1,2,1]) >>> indices=(ix1,ix2) >>> out = paddle.index_put_(x,indices,value) >>> print(x) Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[0., 1., 0.], [0., 0., 1.], [0., 1., 0.]]) >>> print(out) Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[0., 1., 0.], [0., 0., 1.], [0., 1., 0.]])