save_inference_model¶
- paddle.static. save_inference_model ( path_prefix, feed_vars, fetch_vars, executor, **kwargs ) [source]
-
Save current model and its parameters to given path. i.e. Given
path_prefix = "PATH/modelname"
, after invokingsave_inference_model(path_prefix, feed_vars, fetch_vars, executor)
, you will find two files namedmodelname.pdmodel
andmodelname.pdiparams
underPATH
, which represent your model and parameters respectively.- Parameters
-
path_prefix (str) – Directory path to save model + model name without suffix.
feed_vars (Tensor | list[Tensor]) – Variables needed by inference.
fetch_vars (Tensor | list[Tensor]) – Variables returned by inference.
executor (Executor) – The executor that saves the inference model. You can refer to Executor for more details.
kwargs –
Supported keys including ‘program’ and “clip_extra”. Attention please, kwargs is used for backward compatibility mainly.
program(Program): specify a program if you don’t want to use default main program.
clip_extra(bool): the flag indicating whether to clip extra information for every operator. Default: True.
legacy_format(bool): whether to save inference model in legacy format. Default: False.
- Returns
-
None
Examples
>>> import paddle >>> paddle.enable_static() >>> path_prefix = "./infer_model" # User defined network, here a softmax regession example >>> image = paddle.static.data(name='img', shape=[None, 28, 28], dtype='float32') >>> label = paddle.static.data(name='label', shape=[None, 1], dtype='int64') >>> predict = paddle.static.nn.fc(image, 10, activation='softmax') >>> loss = paddle.nn.functional.cross_entropy(predict, label) >>> exe = paddle.static.Executor(paddle.CPUPlace()) >>> exe.run(paddle.static.default_startup_program()) # Feed data and train process # Save inference model. Note we don't save label and loss in this example >>> paddle.static.save_inference_model(path_prefix, [image], [predict], exe) # In this example, the save_inference_mode inference will prune the default # main program according to the network's input node (img) and output node(predict). # The pruned inference program is going to be saved in file "./infer_model.pdmodel" # and parameters are going to be saved in file "./infer_model.pdiparams".