matrix_power¶
- paddle.linalg. matrix_power ( x, n, name=None ) [source]
-
Computes the n-th power of a square matrix or a batch of square matrices.
Let \(X\) be a sqaure matrix or a batch of square matrices, \(n\) be an exponent, the equation should be:
\[Out = X ^ {n}\]Specifically,
If n > 0, it returns the matrix or a batch of matrices raised to the power of n.
If n = 0, it returns the identity matrix or a batch of identity matrices.
If n < 0, it returns the inverse of each matrix (if invertible) raised to the power of abs(n).
- Parameters
-
x (Tensor) – A square matrix or a batch of square matrices to be raised to power n. Its shape should be [*, M, M], where * is zero or more batch dimensions. Its data type should be float32 or float64.
n (int) – The exponent. It can be any positive, negative integer or zero.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, The n-th power of the matrix (or the batch of matrices) x. Its data type should be the same as that of x.
Examples
>>> import paddle >>> x = paddle.to_tensor([[1, 2, 3], ... [1, 4, 9], ... [1, 8, 27]], dtype='float64') >>> print(paddle.linalg.matrix_power(x, 2)) Tensor(shape=[3, 3], dtype=float64, place=Place(cpu), stop_gradient=True, [[6. , 34. , 102.], [14. , 90. , 282.], [36. , 250., 804.]]) >>> print(paddle.linalg.matrix_power(x, 0)) Tensor(shape=[3, 3], dtype=float64, place=Place(cpu), stop_gradient=True, [[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) >>> print(paddle.linalg.matrix_power(x, -2)) Tensor(shape=[3, 3], dtype=float64, place=Place(cpu), stop_gradient=True, [[ 12.91666667, -12.75000000, 2.83333333 ], [-7.66666667 , 8. , -1.83333333 ], [ 1.80555556 , -1.91666667 , 0.44444444 ]])