normalize¶
- paddle.vision.transforms. normalize ( img, mean, std, data_format='CHW', to_rgb=False ) [source]
-
Normalizes a tensor or image with mean and standard deviation.
- Parameters
-
img (PIL.Image|np.array|paddle.Tensor) – input data to be normalized.
mean (list|tuple) – Sequence of means for each channel.
std (list|tuple) – Sequence of standard deviations for each channel.
data_format (str, optional) – Data format of input img, should be ‘HWC’ or ‘CHW’. Default: ‘CHW’.
to_rgb (bool, optional) – Whether to convert to rgb. If input is tensor, this option will be igored. Default: False.
- Returns
-
Normalized mage. Data format is same as input img.
- Return type
-
PIL.Image|np.array|paddle.Tensor
Examples
>>> import numpy as np >>> from PIL import Image >>> from paddle.vision.transforms import functional as F >>> fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8') >>> fake_img = Image.fromarray(fake_img) >>> mean = [127.5, 127.5, 127.5] >>> std = [127.5, 127.5, 127.5] >>> normalized_img = F.normalize(fake_img, mean, std, data_format='HWC') >>> print(normalized_img.max(), normalized_img.min()) 0.99215686 -1.0