AbsTransform¶
- class paddle.distribution. AbsTransform [source]
-
Absolute transformation with formula \(y = f(x) = abs(x)\), element-wise.
This non-injective transformation allows for transformations of scalar distributions with the absolute value function, which maps
(-inf, inf)
to[0, inf)
.For
y
in(0, inf)
,AbsTransform.inverse(y)
returns the set invese{x in (-inf, inf) : |x| = y}
as a tuple,-y, y
.For
y
equal0
,AbsTransform.inverse(0)
returns0, 0
, which is not the set inverse (the set inverse is the singleton {0}), but “works” in conjunction withTransformedDistribution
to produce a left semi-continuous pdf.For
y
in(-inf, 0)
,AbsTransform.inverse(y)
returns the wrong thing-y, y
. This is done for efficiency.
Examples
>>> import paddle >>> abs = paddle.distribution.AbsTransform() >>> print(abs.forward(paddle.to_tensor([-1., 0., 1.]))) Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True, [1., 0., 1.]) >>> print(abs.inverse(paddle.to_tensor([1.]))) (Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True, [-1.]), Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True, [1.])) >>> # The |dX/dY| is constant 1. So Log|dX/dY| == 0 >>> print(abs.inverse_log_det_jacobian(paddle.to_tensor(1.))) (Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 0.), Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 0.)) >>> #Special case handling of 0. >>> print(abs.inverse(paddle.to_tensor([0.]))) (Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True, [0.]), Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True, [0.])) >>> print(abs.inverse_log_det_jacobian(paddle.to_tensor(0.))) (Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 0.), Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 0.))
-
forward
(
x
)
forward¶
-
Forward transformation with mapping \(y = f(x)\).
Useful for turning one random outcome into another.
- Parameters
-
x (Tensos) – Input parameter, generally is a sample generated from
Distribution
. - Returns
-
Outcome of forward transformation.
- Return type
-
Tensor
-
forward_log_det_jacobian
(
x
)
forward_log_det_jacobian¶
-
The log of the absolute value of the determinant of the matrix of all first-order partial derivatives of the inverse function.
- Parameters
-
x (Tensor) – Input tensor, generally is a sample generated from
Distribution
- Returns
-
The log of the absolute value of Jacobian determinant.
- Return type
-
Tensor
-
forward_shape
(
shape
)
forward_shape¶
-
Infer the shape of forward transformation.
- Parameters
-
shape (Sequence[int]) – The input shape.
- Returns
-
The output shape.
- Return type
-
Sequence[int]
-
inverse
(
y
)
inverse¶
-
Inverse transformation \(x = f^{-1}(y)\). It’s useful for “reversing” a transformation to compute one probability in terms of another.
- Parameters
-
y (Tensor) – Input parameter for inverse transformation.
- Returns
-
Outcome of inverse transform.
- Return type
-
Tensor
-
inverse_log_det_jacobian
(
y
)
inverse_log_det_jacobian¶
-
Compute \(log|det J_{f^{-1}}(y)|\). Note that
forward_log_det_jacobian
is the negative of this function, evaluated at \(f^{-1}(y)\).- Parameters
-
y (Tensor) – The input to the
inverse
Jacobian determinant evaluation. - Returns
-
The value of \(log|det J_{f^{-1}}(y)|\).
- Return type
-
Tensor
-
inverse_shape
(
shape
)
inverse_shape¶
-
Infer the shape of inverse transformation.
- Parameters
-
shape (Sequence[int]) – The input shape of inverse transformation.
- Returns
-
The output shape of inverse transformation.
- Return type
-
Sequence[int]