subtract¶
- paddle. subtract ( x, y, name=None ) [source]
-
Substract two tensors element-wise. The equation is:
\[out = x - y\]Note
paddle.subtract
supports broadcasting. If you want know more about broadcasting, please refer to Introduction to Tensor .- Parameters
-
x (Tensor) – the input tensor, it’s data type should be float32, float64, int32, int64.
y (Tensor) – the input tensor, it’s data type should be float32, float64, int32, int64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
N-D Tensor. A location into which the result is stored. If x, y have different shapes and are “broadcastable”, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.
Examples
>>> import paddle >>> x = paddle.to_tensor([[1, 2], [7, 8]]) >>> y = paddle.to_tensor([[5, 6], [3, 4]]) >>> res = paddle.subtract(x, y) >>> print(res) Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True, [[-4, -4], [ 4, 4]]) >>> x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]]) >>> y = paddle.to_tensor([1, 0, 4]) >>> res = paddle.subtract(x, y) >>> print(res) Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[[ 0, 2, -1], [ 0, 2, -1]]]) >>> x = paddle.to_tensor([2, float('nan'), 5], dtype='float32') >>> y = paddle.to_tensor([1, 4, float('nan')], dtype='float32') >>> res = paddle.subtract(x, y) >>> print(res) Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True, [1. , nan, nan]) >>> x = paddle.to_tensor([5, float('inf'), -float('inf')], dtype='float64') >>> y = paddle.to_tensor([1, 4, 5], dtype='float64') >>> res = paddle.subtract(x, y) >>> print(res) Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True, [ 4. , inf., -inf.])