subtract

paddle. subtract ( x, y, name=None ) [source]

Substract two tensors element-wise. The equation is:

\[out = x - y\]

Note

paddle.subtract supports broadcasting. If you want know more about broadcasting, please refer to Introduction to Tensor .

Parameters
  • x (Tensor) – the input tensor, it’s data type should be float32, float64, int32, int64.

  • y (Tensor) – the input tensor, it’s data type should be float32, float64, int32, int64.

  • name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.

Returns

N-D Tensor. A location into which the result is stored. If x, y have different shapes and are “broadcastable”, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.

Examples

>>> import paddle

>>> x = paddle.to_tensor([[1, 2], [7, 8]])
>>> y = paddle.to_tensor([[5, 6], [3, 4]])
>>> res = paddle.subtract(x, y)
>>> print(res)
Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
[[-4, -4],
 [ 4,  4]])

>>> x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
>>> y = paddle.to_tensor([1, 0, 4])
>>> res = paddle.subtract(x, y)
>>> print(res)
Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
[[[ 0,  2, -1],
  [ 0,  2, -1]]])

>>> x = paddle.to_tensor([2, float('nan'), 5], dtype='float32')
>>> y = paddle.to_tensor([1, 4, float('nan')], dtype='float32')
>>> res = paddle.subtract(x, y)
>>> print(res)
Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
[1. , nan, nan])

>>> x = paddle.to_tensor([5, float('inf'), -float('inf')], dtype='float64')
>>> y = paddle.to_tensor([1, 4, 5], dtype='float64')
>>> res = paddle.subtract(x, y)
>>> print(res)
Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
[ 4.  ,  inf., -inf.])