flops

paddle. flops ( net, input_size, custom_ops=None, print_detail=False ) [source]

Print a table about the FLOPs of network.

Parameters
  • net (paddle.nn.Layer||paddle.static.Program) – The network which could be a instance of paddle.nn.Layer in dygraph or paddle.static.Program in static graph.

  • input_size (list) – size of input tensor. Note that the batch_size in argument input_size only support 1.

  • custom_ops (A dict of function, optional) – A dictionary which key is the class of specific operation such as paddle.nn.Conv2D and the value is the function used to count the FLOPs of this operation. This argument only work when argument net is an instance of paddle.nn.Layer. The details could be found in following example code. Default is None.

  • print_detail (bool, optional) – Whether to print the detail information, like FLOPs per layer, about the net FLOPs. Default is False.

Returns

A number about the FLOPs of total network.

Return type

Int

Examples

>>> import paddle
>>> import paddle.nn as nn

>>> class LeNet(nn.Layer):
...     def __init__(self, num_classes=10):
...         super().__init__()
...         self.num_classes = num_classes
...         self.features = nn.Sequential(
...             nn.Conv2D(1, 6, 3, stride=1, padding=1),
...             nn.ReLU(),
...             nn.MaxPool2D(2, 2),
...             nn.Conv2D(6, 16, 5, stride=1, padding=0),
...             nn.ReLU(),
...             nn.MaxPool2D(2, 2))
...
...         if num_classes > 0:
...             self.fc = nn.Sequential(
...                 nn.Linear(400, 120),
...                 nn.Linear(120, 84),
...                 nn.Linear(84, 10))
...
...     def forward(self, inputs):
...         x = self.features(inputs)
...
...         if self.num_classes > 0:
...             x = paddle.flatten(x, 1)
...             x = self.fc(x)
...         return x
...
>>> lenet = LeNet()
>>> # m is the instance of nn.Layer, x is the intput of layer, y is the output of layer.
>>> def count_leaky_relu(m, x, y):
...     x = x[0]
...     nelements = x.numel()
...     m.total_ops += int(nelements)
...
>>> FLOPs = paddle.flops(lenet,
...                      [1, 1, 28, 28],
...                      custom_ops= {nn.LeakyReLU: count_leaky_relu},
...                      print_detail=True)
>>> print(FLOPs)
<class 'paddle.nn.layer.conv.Conv2D'>'s flops has been counted
<class 'paddle.nn.layer.activation.ReLU'>'s flops has been counted
Cannot find suitable count function for <class 'paddle.nn.layer.pooling.MaxPool2D'>. Treat it as zero FLOPs.
<class 'paddle.nn.layer.common.Linear'>'s flops has been counted
+--------------+-----------------+-----------------+--------+--------+
|  Layer Name  |   Input Shape   |   Output Shape  | Params | Flops  |
+--------------+-----------------+-----------------+--------+--------+
|   conv2d_0   |  [1, 1, 28, 28] |  [1, 6, 28, 28] |   60   | 47040  |
|   re_lu_0    |  [1, 6, 28, 28] |  [1, 6, 28, 28] |   0    |   0    |
| max_pool2d_0 |  [1, 6, 28, 28] |  [1, 6, 14, 14] |   0    |   0    |
|   conv2d_1   |  [1, 6, 14, 14] | [1, 16, 10, 10] |  2416  | 241600 |
|   re_lu_1    | [1, 16, 10, 10] | [1, 16, 10, 10] |   0    |   0    |
| max_pool2d_1 | [1, 16, 10, 10] |  [1, 16, 5, 5]  |   0    |   0    |
|   linear_0   |     [1, 400]    |     [1, 120]    | 48120  | 48000  |
|   linear_1   |     [1, 120]    |     [1, 84]     | 10164  | 10080  |
|   linear_2   |     [1, 84]     |     [1, 10]     |  850   |  840   |
+--------------+-----------------+-----------------+--------+--------+
Total Flops: 347560     Total Params: 61610
347560