TanhTransform¶
- class paddle.distribution. TanhTransform [source]
-
Tanh transformation with mapping \(y = \tanh(x)\).
Examples
>>> import paddle >>> tanh = paddle.distribution.TanhTransform() >>> x = paddle.to_tensor([[1., 2., 3.], [4., 5., 6.]]) >>> >>> print(tanh.forward(x)) Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[0.76159418, 0.96402758, 0.99505472], [0.99932921, 0.99990916, 0.99998784]]) >>> print(tanh.inverse(tanh.forward(x))) Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[1. , 2. , 2.99999666], [3.99993253, 4.99977016, 6.00527668]]) >>> print(tanh.forward_log_det_jacobian(x)) Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[-0.86756170 , -2.65000558 , -4.61865711 ], [-6.61437654 , -8.61379623 , -10.61371803]]) >>> print(tanh.inverse_log_det_jacobian(tanh.forward(x))) Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[0.86756176 , 2.65000558 , 4.61866283 ], [6.61441946 , 8.61399269 , 10.61451530]]) >>>
-
forward
(
x
)
forward¶
-
Forward transformation with mapping \(y = f(x)\).
Useful for turning one random outcome into another.
- Parameters
-
x (Tensos) – Input parameter, generally is a sample generated from
Distribution
. - Returns
-
Outcome of forward transformation.
- Return type
-
Tensor
-
forward_log_det_jacobian
(
x
)
forward_log_det_jacobian¶
-
The log of the absolute value of the determinant of the matrix of all first-order partial derivatives of the inverse function.
- Parameters
-
x (Tensor) – Input tensor, generally is a sample generated from
Distribution
- Returns
-
The log of the absolute value of Jacobian determinant.
- Return type
-
Tensor
-
forward_shape
(
shape
)
forward_shape¶
-
Infer the shape of forward transformation.
- Parameters
-
shape (Sequence[int]) – The input shape.
- Returns
-
The output shape.
- Return type
-
Sequence[int]
-
inverse
(
y
)
inverse¶
-
Inverse transformation \(x = f^{-1}(y)\). It’s useful for “reversing” a transformation to compute one probability in terms of another.
- Parameters
-
y (Tensor) – Input parameter for inverse transformation.
- Returns
-
Outcome of inverse transform.
- Return type
-
Tensor
-
inverse_log_det_jacobian
(
y
)
inverse_log_det_jacobian¶
-
Compute \(log|det J_{f^{-1}}(y)|\). Note that
forward_log_det_jacobian
is the negative of this function, evaluated at \(f^{-1}(y)\).- Parameters
-
y (Tensor) – The input to the
inverse
Jacobian determinant evaluation. - Returns
-
The value of \(log|det J_{f^{-1}}(y)|\).
- Return type
-
Tensor
-
inverse_shape
(
shape
)
inverse_shape¶
-
Infer the shape of inverse transformation.
- Parameters
-
shape (Sequence[int]) – The input shape of inverse transformation.
- Returns
-
The output shape of inverse transformation.
- Return type
-
Sequence[int]
-
forward
(
x
)