normalize_program¶
- paddle.static. normalize_program ( program, feed_vars, fetch_vars, **kwargs ) [source]
-
Normalize/Optimize a program according to feed_vars and fetch_vars.
- Parameters
-
program (Program) – Specify a program you want to optimize.
feed_vars (Tensor | list[Tensor]) – Variables needed by inference.
fetch_vars (Tensor | list[Tensor]) – Variables returned by inference.
kwargs – Supported keys including
skip_prune_program
. - skip_prune_program(bool): whether to skip prunning program. Defaults to False.
- Returns
-
Normalized/Optimized program.
- Return type
-
Program
Examples
>>> import paddle >>> paddle.enable_static() >>> path_prefix = "./infer_model" # User defined network, here a softmax regession example >>> image = paddle.static.data(name='img', shape=[None, 28, 28], dtype='float32') >>> label = paddle.static.data(name='label', shape=[None, 1], dtype='int64') >>> predict = paddle.static.nn.fc(image, 10, activation='softmax') >>> loss = paddle.nn.functional.cross_entropy(predict, label) >>> exe = paddle.static.Executor(paddle.CPUPlace()) >>> exe.run(paddle.static.default_startup_program()) # normalize main program. >>> program = paddle.static.default_main_program() >>> normalized_program = paddle.static.normalize_program(program, [image], [predict])