RandomSampler¶
- class paddle.io. RandomSampler ( data_source, replacement=False, num_samples=None, generator=None ) [source]
-
Iterate samples randomly, yield shuffled indices, if
replacement=False
, yield shuffled indices of the whole data souce, ifreplacement=True
,num_samples
can set to specify the sample number to draw.- Parameters
-
data_source (Dataset) – dataset to sample, this could be an instance of Dataset or IterableDataset or other Python object which implemented
__len__
to get indices as the range ofdataset
length. Default None.replacement (bool, optional) – If False, sample the whole dataset, If True, set
num_samples
for how many samples to draw. Default False.num_samples (int, optional) – set sample number to draw if
replacement
is True, then it will take samples according to the number you set. Default None, disabled.generator (Generator, optional) – specify a generator to sample the
data_source
. Default None, disabled.
- Returns
-
a Sampler yield sample index randomly.
- Return type
-
RandomSampler
Examples
>>> import numpy as np >>> from paddle.io import Dataset, RandomSampler >>> np.random.seed(2023) >>> class RandomDataset(Dataset): ... def __init__(self, num_samples): ... self.num_samples = num_samples ... ... def __getitem__(self, idx): ... image = np.random.random([784]).astype('float32') ... label = np.random.randint(0, 9, (1, )).astype('int64') ... return image, label ... ... def __len__(self): ... return self.num_samples ... >>> sampler = RandomSampler(data_source=RandomDataset(100)) >>> for index in sampler: ... print(index) 56 12 68 ... 87