IndependentTransform¶
- class paddle.distribution. IndependentTransform ( base, reinterpreted_batch_rank ) [source]
-
IndependentTransform
wraps a base transformation, reinterprets some of the rightmost batch axes as event axes.Generally, it is used to expand the event axes. This has no effect on the forward or inverse transformaion, but does sum out the
reinterpretd_bach_rank
rightmost dimensions in computing the determinant of Jacobian matrix.To see this, consider the
ExpTransform
applied to a Tensor which has sample, batch, and event(S,B,E)
shape semantics. Suppose the Tensor’s paritioned-shape is(S=[4], B=[2, 2], E=[3])
, reinterpreted_batch_rank is 1. Then the reinterpreted Tensor’s shape is(S=[4], B=[2], E=[2, 3])
. The shape returned byforward
andinverse
is unchanged, ie,[4,2,2,3]
. However the shape returned byinverse_log_det_jacobian
is[4,2]
, because the Jacobian determinant is a reduction over the event dimensions.- Parameters
-
base (Transform) – The base transformation.
reinterpreted_batch_rank (int) – The num of rightmost batch rank that will be reinterpreted as event rank.
Examples
>>> import paddle >>> x = paddle.to_tensor([[1., 2., 3.], [4., 5., 6.]]) >>> # Exponential transform with event_rank = 1 >>> multi_exp = paddle.distribution.IndependentTransform( ... paddle.distribution.ExpTransform(), 1) >>> print(multi_exp.forward(x)) Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[2.71828175 , 7.38905621 , 20.08553696 ], [54.59814835 , 148.41316223, 403.42880249]]) >>> print(multi_exp.forward_log_det_jacobian(x)) Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True, [6. , 15.])
-
forward
(
x
)
forward¶
-
Forward transformation with mapping \(y = f(x)\).
Useful for turning one random outcome into another.
- Parameters
-
x (Tensos) – Input parameter, generally is a sample generated from
Distribution
. - Returns
-
Outcome of forward transformation.
- Return type
-
Tensor
-
forward_log_det_jacobian
(
x
)
forward_log_det_jacobian¶
-
The log of the absolute value of the determinant of the matrix of all first-order partial derivatives of the inverse function.
- Parameters
-
x (Tensor) – Input tensor, generally is a sample generated from
Distribution
- Returns
-
The log of the absolute value of Jacobian determinant.
- Return type
-
Tensor
-
forward_shape
(
shape
)
forward_shape¶
-
Infer the shape of forward transformation.
- Parameters
-
shape (Sequence[int]) – The input shape.
- Returns
-
The output shape.
- Return type
-
Sequence[int]
-
inverse
(
y
)
inverse¶
-
Inverse transformation \(x = f^{-1}(y)\). It’s useful for “reversing” a transformation to compute one probability in terms of another.
- Parameters
-
y (Tensor) – Input parameter for inverse transformation.
- Returns
-
Outcome of inverse transform.
- Return type
-
Tensor
-
inverse_log_det_jacobian
(
y
)
inverse_log_det_jacobian¶
-
Compute \(log|det J_{f^{-1}}(y)|\). Note that
forward_log_det_jacobian
is the negative of this function, evaluated at \(f^{-1}(y)\).- Parameters
-
y (Tensor) – The input to the
inverse
Jacobian determinant evaluation. - Returns
-
The value of \(log|det J_{f^{-1}}(y)|\).
- Return type
-
Tensor
-
inverse_shape
(
shape
)
inverse_shape¶
-
Infer the shape of inverse transformation.
- Parameters
-
shape (Sequence[int]) – The input shape of inverse transformation.
- Returns
-
The output shape of inverse transformation.
- Return type
-
Sequence[int]