SigmoidTransform¶
- class paddle.distribution. SigmoidTransform [source]
-
Sigmoid transformation with mapping \(y = \frac{1}{1 + \exp(-x)}\) and \(x = \text{logit}(y)\).
Examples
>>> import paddle >>> x = paddle.ones((2,3)) >>> t = paddle.distribution.SigmoidTransform() >>> print(t.forward(x)) Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[0.73105860, 0.73105860, 0.73105860], [0.73105860, 0.73105860, 0.73105860]]) >>> print(t.inverse(t.forward(x))) Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[1.00000012, 1.00000012, 1.00000012], [1.00000012, 1.00000012, 1.00000012]]) >>> print(t.forward_log_det_jacobian(x)) Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[-1.62652326, -1.62652326, -1.62652326], [-1.62652326, -1.62652326, -1.62652326]])
-
forward
(
x
)
forward¶
-
Forward transformation with mapping \(y = f(x)\).
Useful for turning one random outcome into another.
- Parameters
-
x (Tensos) – Input parameter, generally is a sample generated from
Distribution
. - Returns
-
Outcome of forward transformation.
- Return type
-
Tensor
-
forward_log_det_jacobian
(
x
)
forward_log_det_jacobian¶
-
The log of the absolute value of the determinant of the matrix of all first-order partial derivatives of the inverse function.
- Parameters
-
x (Tensor) – Input tensor, generally is a sample generated from
Distribution
- Returns
-
The log of the absolute value of Jacobian determinant.
- Return type
-
Tensor
-
forward_shape
(
shape
)
forward_shape¶
-
Infer the shape of forward transformation.
- Parameters
-
shape (Sequence[int]) – The input shape.
- Returns
-
The output shape.
- Return type
-
Sequence[int]
-
inverse
(
y
)
inverse¶
-
Inverse transformation \(x = f^{-1}(y)\). It’s useful for “reversing” a transformation to compute one probability in terms of another.
- Parameters
-
y (Tensor) – Input parameter for inverse transformation.
- Returns
-
Outcome of inverse transform.
- Return type
-
Tensor
-
inverse_log_det_jacobian
(
y
)
inverse_log_det_jacobian¶
-
Compute \(log|det J_{f^{-1}}(y)|\). Note that
forward_log_det_jacobian
is the negative of this function, evaluated at \(f^{-1}(y)\).- Parameters
-
y (Tensor) – The input to the
inverse
Jacobian determinant evaluation. - Returns
-
The value of \(log|det J_{f^{-1}}(y)|\).
- Return type
-
Tensor
-
inverse_shape
(
shape
)
inverse_shape¶
-
Infer the shape of inverse transformation.
- Parameters
-
shape (Sequence[int]) – The input shape of inverse transformation.
- Returns
-
The output shape of inverse transformation.
- Return type
-
Sequence[int]
-
forward
(
x
)