fused_rotary_position_embedding¶
- paddle.incubate.nn.functional. fused_rotary_position_embedding ( q, k=None, v=None, sin=None, cos=None, position_ids=None, use_neox_rotary_style=True ) [source]
-
Fused rotary position embedding.
- Parameters
-
q (Tensor) – The input tensor. The data type is bfloat16, float16, float32 or float64. The shape of q must be [batch_size, seq_len, num_heads, head_dim] and head_dim must be a multiple of 2.
k (Tensor, optional) – The input tensor. The data type is bfloat16, float16, float32 or float64. The shape of k must be [batch_size, seq_len, num_heads, head_dim] and head_dim must be a multiple of 2.
v (Tensor, optional) – The input tensor. The data type is bfloat16, float16, float32 or float64. The shape of v must be [batch_size, seq_len, num_heads, head_dim] and head_dim must be a multiple of 2.
sin (Tensor, optional) – The input tensor. The data type is bfloat16, float16, float32 or float64. The shape of sin must be [seq_len, head_dim] or [1, seq_len, 1, head_dim] and head_dim must be a multiple of 2.
cos (Tensor, optional) – The input tensor. The data type is bfloat16, float16, float32 or float64. The shape of cos must be [seq_len, head_dim] or [1, seq_len, 1, head_dim] and head_dim must be a multiple of 2.
position_ids (Tensor, optional) – The input tensor. The data type is int64. The shape of position_ids must be [batch_size, seq_len].
use_neox_rotary_style (optional|bool) – When the use_neox_rotary_style is True, every two adjacent numbers are calculated. When the use_neox_rotary_style is False, the numbers corresponding to the positions of the front half and back half segments are calculated. Default True.
- Returns
-
out_q/out_k/out_v Tensor representing the fused rotary position embedding, has same shape and data type as q .
Examples
>>> >>> import paddle >>> from paddle.incubate.nn.functional import fused_rotary_position_embedding >>> paddle.set_device('gpu') >>> # batch_size = 2 >>> # seq_len = 2 >>> # num_heads = 2 >>> # head_dim = 2 >>> paddle.seed(1204) >>> # q, k, v: [batch_size, seq_len, num_heads, head_dim] >>> q = paddle.randn([2, 2, 2, 2], dtype='float16') >>> k = paddle.randn([2, 2, 2, 2], dtype='float16') >>> v = paddle.randn([2, 2, 2, 2], dtype='float16') >>> # sin, cos: [1, seq_len, 1, head_dim] >>> x = paddle.randn([1, 2, 1, 2], dtype='float16') >>> y = paddle.randn([1, 2, 1, 2], dtype='float16') >>> sin = paddle.sin(x) >>> cos = paddle.cos(y) >>> # position_ids: [batch_size, seq_len] >>> position_ids = paddle.randint(high=2, shape=[2, 2], dtype='int64') >>> # out_q, out_k, out_v: [batch_size, seq_len, num_heads, head_dim] >>> out_q, out_k, out_v = fused_rotary_position_embedding(q, k, v, sin=sin, cos=cos, position_ids=position_ids, use_neox_rotary_style=False) >>> print(out_q) Tensor(shape=[2, 2, 2, 2], dtype=float16, place=Place(gpu:0), stop_gradient=True, [[[[-0.54931641, 0.64990234], [-1.08691406, 1.18261719]], [[ 0.57812500, 0.11749268], [-0.63281250, 0.15551758]]], [[[-0.77050781, 0.07733154], [-0.73730469, -0.16735840]], [[ 0.07116699, -0.90966797], [-0.03628540, -0.20202637]]]])