reduce_scatter¶
- paddle.distributed. reduce_scatter ( tensor, tensor_list, op=0, group=None, sync_op=True ) [source]
-
Reduces, then scatters a list of tensors to all processes in a group
- Parameters
-
tensor (Tensor) – The output tensor on each rank. The result will overwrite this tenor after communication. Support float16, float32, float64, int32, int64, int8, uint8 or bool as the input data type.
tensor_list (List[Tensor]]) – List of tensors to reduce and scatter. Every element in the list must be a Tensor whose data type should be float16, float32, float64, int32, int64, int8, uint8, bool or bfloat16.
op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.MIN|ReduceOp.PROD, optional) – The reduction used. If none is given, use ReduceOp.SUM as default.
group (Group, optional) – Communicate in which group. If none is given, use the global group as default.
sync_op (bool, optional) – Indicate whether the communication is sync or not. If none is given, use true as default.
- Returns
-
Return a task object.
Warning
This API only supports the dygraph mode.
Examples
>>> >>> import paddle >>> import paddle.distributed as dist >>> dist.init_parallel_env() >>> if dist.get_rank() == 0: ... data1 = paddle.to_tensor([0, 1]) ... data2 = paddle.to_tensor([2, 3]) >>> else: ... data1 = paddle.to_tensor([4, 5]) ... data2 = paddle.to_tensor([6, 7]) >>> dist.reduce_scatter(data1, [data1, data2]) >>> print(data1) >>> # [4, 6] (2 GPUs, out for rank 0) >>> # [8, 10] (2 GPUs, out for rank 1)