compare_accuracy¶
- paddle.amp.debugging. compare_accuracy ( dump_path, another_dump_path, output_filename, loss_scale=1, dump_all_tensors=False ) [source]
-
This is a precision comparison tool that can be used to compare log data of float16 and float32.
- Parameters
-
dump_path (str) – The path of the running log, such as the log for execution using the float32 data type.
another_dump_path (str) – the path of another running log ,such as the log for execution using the float16 data type.
output_filename (str) – the excel file nmae of compare output.
loss_scale (float, optional) – the loss_scale during the training phase. Default is 1.
dump_all_tensors (bool, optional) – dump all tensor, It is currently not support. Default is False.
Examples
>>> import paddle >>> from paddle.base import core >>> try: ... import xlsxwriter as xlw ... except ImportError: ... import subprocess ... subprocess.check_call( ... ['python', '-m', 'pip', 'install', 'xlsxwriter==3.0.9'] ... ) ... import xlsxwriter as xlw ... if core.is_compiled_with_cuda(): ... paddle.set_flags( ... {"FLAGS_check_nan_inf": 1, "FLAGS_check_nan_inf_level": 3} ... ) ... path = "workerlog_log_dir" ... paddle.base.core.set_nan_inf_debug_path(path) ... x = paddle.to_tensor( ... [2, 3, 4, 0], dtype="float32" ... ) ... y = paddle.to_tensor( ... [1, 5, 2, 0], dtype="float32" ... ) ... z1 = x + y ... out_excel = "compary_accuracy_out_excel.csv" ... paddle.amp.debugging.compare_accuracy( ... path, path, out_excel, loss_scale=1, dump_all_tensors=False ... )