concat¶
- paddle. concat ( x, axis=0, name=None ) [source]
-
Concatenates the input along the axis. It doesn’t support 0-D Tensor because it requires a certain axis, and 0-D Tensor doesn’t have any axis.
- Parameters
-
x (list|tuple) –
x
is a Tensor list or Tensor tuple which is with data type bool, float16, float32, float64, int32, int64, int8, uint8. All the Tensors inx
must have same data type.axis (int|Tensor, optional) – Specify the axis to operate on the input Tensors. Tt should be integer or 0-D int Tensor with shape []. The effective range is [-R, R), where R is Rank(x). When
axis < 0
, it works the same way asaxis+R
. Default is 0.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, A Tensor with the same data type as
x
.
Examples
>>> import paddle >>> x1 = paddle.to_tensor([[1, 2, 3], ... [4, 5, 6]]) >>> x2 = paddle.to_tensor([[11, 12, 13], ... [14, 15, 16]]) >>> x3 = paddle.to_tensor([[21, 22], ... [23, 24]]) >>> zero = paddle.full(shape=[1], dtype='int32', fill_value=0) >>> # When the axis is negative, the real axis is (axis + Rank(x)) >>> # As follow, axis is -1, Rank(x) is 2, the real axis is 1 >>> out1 = paddle.concat(x=[x1, x2, x3], axis=-1) >>> out2 = paddle.concat(x=[x1, x2], axis=0) >>> out3 = paddle.concat(x=[x1, x2], axis=zero) >>> print(out1) Tensor(shape=[2, 8], dtype=int64, place=Place(cpu), stop_gradient=True, [[1 , 2 , 3 , 11, 12, 13, 21, 22], [4 , 5 , 6 , 14, 15, 16, 23, 24]]) >>> print(out2) Tensor(shape=[4, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[1 , 2 , 3 ], [4 , 5 , 6 ], [11, 12, 13], [14, 15, 16]]) >>> print(out3) Tensor(shape=[4, 3], dtype=int64, place=Place(cpu), stop_gradient=True, [[1 , 2 , 3 ], [4 , 5 , 6 ], [11, 12, 13], [14, 15, 16]])