get_worker_info¶
- paddle.io. get_worker_info ( ) [source]
-
Get DataLoader worker process information function, this function is used to split data copy in worker process for IterableDataset (see
paddle.io.IterableDataset
), worker information contains following fields:num_workers
: total worker process number, see paddle.io.DataLoaderid
: the worker processs id, count from 0 tonum_workers - 1
dataset
: the dataset object in this worker process- Returns
-
an instance of WorkerInfo which contains fields above.
- Return type
-
WorkerInfo
Notes
For more usage and examples, please see
paddle.io.IterableDataset
Example
>>> import math >>> import paddle >>> import numpy as np >>> from paddle.io import IterableDataset, DataLoader, get_worker_info >>> class SplitedIterableDataset(IterableDataset): ... def __init__(self, start, end): ... self.start = start ... self.end = end ... ... def __iter__(self): ... worker_info = get_worker_info() ... if worker_info is None: ... iter_start = self.start ... iter_end = self.end ... else: ... per_worker = int( ... math.ceil((self.end - self.start) / float( ... worker_info.num_workers))) ... worker_id = worker_info.id ... iter_start = self.start + worker_id * per_worker ... iter_end = min(iter_start + per_worker, self.end) ... ... for i in range(iter_start, iter_end): ... yield np.array([i]) ... >>> place = paddle.CPUPlace() >>> dataset = SplitedIterableDataset(start=2, end=9) >>> dataloader = DataLoader( ... dataset, ... places=place, ... num_workers=2, ... batch_size=1, ... drop_last=True) ... >>> for data in dataloader: ... print(data) Tensor(shape=[1, 1], dtype=int64, place=Place(cpu), stop_gradient=True, [[2]]) Tensor(shape=[1, 1], dtype=int64, place=Place(cpu), stop_gradient=True, [[6]]) Tensor(shape=[1, 1], dtype=int64, place=Place(cpu), stop_gradient=True, [[3]]) Tensor(shape=[1, 1], dtype=int64, place=Place(cpu), stop_gradient=True, [[7]]) Tensor(shape=[1, 1], dtype=int64, place=Place(cpu), stop_gradient=True, [[4]]) Tensor(shape=[1, 1], dtype=int64, place=Place(cpu), stop_gradient=True, [[8]]) Tensor(shape=[1, 1], dtype=int64, place=Place(cpu), stop_gradient=True, [[5]])