Dirichlet¶
- class paddle.distribution. Dirichlet ( concentration ) [source]
-
Dirichlet distribution with parameter “concentration”.
The Dirichlet distribution is defined over the (k-1)-simplex using a positive, lenght-k vector concentration(k > 1). The Dirichlet is identically the Beta distribution when k = 2.
For independent and identically distributed continuous random variable \(\boldsymbol X \in R_k\) , and support \(\boldsymbol X \in (0,1), ||\boldsymbol X|| = 1\) , The probability density function (pdf) is
\[f(\boldsymbol X; \boldsymbol \alpha) = \frac{1}{B(\boldsymbol \alpha)} \prod_{i=1}^{k}x_i^{\alpha_i-1}\]where \(\boldsymbol \alpha = {\alpha_1,...,\alpha_k}, k \ge 2\) is parameter, the normalizing constant is the multivariate beta function.
\[B(\boldsymbol \alpha) = \frac{\prod_{i=1}^{k} \Gamma(\alpha_i)}{\Gamma(\alpha_0)}\]\(\alpha_0=\sum_{i=1}^{k} \alpha_i\) is the sum of parameters, \(\Gamma(\alpha)\) is gamma function.
- Parameters
-
concentration (Tensor) – “Concentration” parameter of dirichlet distribution, also called \(\alpha\). When it’s over one dimension, the last axis denotes the parameter of distribution,
event_shape=concentration.shape[-1:]
, axes other than last are condsider batch dimensions withbatch_shape=concentration.shape[:-1]
.
Examples
>>> import paddle >>> dirichlet = paddle.distribution.Dirichlet(paddle.to_tensor([1., 2., 3.])) >>> print(dirichlet.entropy()) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, -1.24434423) >>> print(dirichlet.prob(paddle.to_tensor([.3, .5, .6]))) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 10.80000019)
- property mean
-
Mean of Dirichelt distribution.
- Returns
-
Mean value of distribution.
- property variance
-
Variance of Dirichlet distribution.
- Returns
-
Variance value of distribution.
-
sample
(
shape=()
)
sample¶
-
Sample from dirichlet distribution.
- Parameters
-
shape (Sequence[int], optional) – Sample shape. Defaults to empty tuple.
-
prob
(
value
)
prob¶
-
Probability density function(PDF) evaluated at value.
- Parameters
-
value (Tensor) – Value to be evaluated.
- Returns
-
PDF evaluated at value.
-
log_prob
(
value
)
log_prob¶
-
Log of probability densitiy function.
- Parameters
-
value (Tensor) – Value to be evaluated.
-
entropy
(
)
entropy¶
-
Entropy of Dirichlet distribution.
- Returns
-
Entropy of distribution.
- property batch_shape
-
Returns batch shape of distribution
- Returns
-
batch shape
- Return type
-
Sequence[int]
- property event_shape
-
Returns event shape of distribution
- Returns
-
event shape
- Return type
-
Sequence[int]
-
kl_divergence
(
other
)
[source]
kl_divergence¶
-
The KL-divergence between self distributions and other.
-
probs
(
value
)
probs¶
-
Probability density/mass function.
Note
This method will be deprecated in the future, please use prob instead.
-
rsample
(
shape=()
)
rsample¶
-
reparameterized sample