MaxUnPool2D¶
- class paddle.nn. MaxUnPool2D ( kernel_size, stride=None, padding=0, data_format='NCHW', output_size=None, name=None ) [source]
-
This API implements max unpooling 2d opereation.
‘max_unpool2d’ accepts the output of ‘max_unpool2d’ as input Including the indices of the maximum value and calculating the partial inverse All non-maximum values are set to zero.
- Parameters
-
kernel_size (int|tuple) – The unpool kernel size. If unpool kernel size is a tuple or list, it must contain an integer.
stride (int|list|tuple) – The unpool stride size. If unpool stride size is a tuple or list, it must contain an integer.
kernel_size – Size of the max unpooling window.
padding (int | tuple) – Padding that was added to the input.
output_size (list|tuple, optional) – The target output size. If output_size is not specified, the actual output shape will be automatically calculated by (input_shape, kernel_size, padding).
name (str, optional) – For detailed information, please refer to Name. Usually name is no need to set and None by default.
Input (-) – \((N, C, H_{in}, W_{in})\)
Output (-) –
\((N, C, H_{out}, W_{out})\), where
\[H_{out} = (H_{in} - 1) \times \text{stride[0]} - 2 \times \text{padding[0]} + \text{kernel\_size[0]}\]\[W_{out} = (W_{in} - 1) \times \text{stride[1]} - 2 \times \text{padding[1]} + \text{kernel\_size[1]}\]or as given by
output_size
in the call operator
- Returns
-
A callable object of MaxUnPool2D.
Examples
>>> import paddle >>> import paddle.nn.functional as F >>> data = paddle.rand(shape=[1, 1, 6, 6]) >>> pool_out, indices = F.max_pool2d(data, kernel_size=2, stride=2, padding=0, return_mask=True) >>> print(pool_out.shape) [1, 1, 3, 3] >>> print(indices.shape) [1, 1, 3, 3] >>> Unpool2D = paddle.nn.MaxUnPool2D(kernel_size=2, padding=0) >>> unpool_out = Unpool2D(pool_out, indices) >>> print(unpool_out.shape) [1, 1, 6, 6]
-
forward
(
x,
indices
)
forward¶
-
Defines the computation performed at every call. Should be overridden by all subclasses.
- Parameters
-
*inputs (tuple) – unpacked tuple arguments
**kwargs (dict) – unpacked dict arguments
-
extra_repr
(
)
extra_repr¶
-
Extra representation of this layer, you can have custom implementation of your own layer.