erase¶
- paddle.vision.transforms. erase ( img, i, j, h, w, v, inplace=False ) [source]
-
Erase the pixels of selected area in input image with given value.
- Parameters
-
img (paddle.Tensor | np.array | PIL.Image) – input Tensor image. For Tensor input, the shape should be (C, H, W). For np.array input, the shape should be (H, W, C).
i (int) – y coordinate of the top-left point of erased region.
j (int) – x coordinate of the top-left point of erased region.
h (int) – Height of the erased region.
w (int) – Width of the erased region.
v (paddle.Tensor | np.array) – value used to replace the pixels in erased region. It should be np.array when img is np.array or PIL.Image.
inplace (bool, optional) – Whether this transform is inplace. Default: False.
- Returns
-
Erased image. The type is same with input image.
- Return type
-
paddle.Tensor | np.array | PIL.Image
Examples
import paddle fake_img = paddle.randn((3, 2, 4)).astype(paddle.float32) print(fake_img) #Tensor(shape=[3, 2, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True, # [[[ 0.02169025, -0.97859967, -1.39175487, -1.07478464], # [ 0.20654772, 1.74624777, 0.32268861, -0.13857445]], # # [[-0.14993843, 1.10793507, -0.40056887, -1.94395220], # [ 0.41686651, 0.44551995, -0.09356714, -0.60898107]], # # [[-0.24998808, -1.47699273, -0.88838995, 0.42629015], # [ 0.56948012, -0.96200180, 0.53355658, 3.20450878]]]) values = paddle.zeros((1,1,1), dtype=paddle.float32) result = paddle.vision.transforms.erase(fake_img, 0, 1, 1, 2, values) print(result) #Tensor(shape=[3, 2, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True, # [[[ 0.02169025, 0. , 0. , -1.07478464], # [ 0.20654772, 1.74624777, 0.32268861, -0.13857445]], # # [[-0.14993843, 0. , 0. , -1.94395220], # [ 0.41686651, 0.44551995, -0.09356714, -0.60898107]], # # [[-0.24998808, 0. , 0. , 0.42629015], # [ 0.56948012, -0.96200180, 0.53355658, 3.20450878]]])