prune_model¶
- paddle.incubate.asp. prune_model ( model, n=2, m=4, mask_algo='mask_1d', with_mask=True ) [source]
-
Pruning parameters of supported layers in
model
via specified mask generation function given bymask_algo
. This function supports both training and inference controlled bywith_mask
. Ifwith_mask
is True, it would also prune parameter related ASP mask Variables, else only prunes parameters.Note: (Static graph mode) If calling this function with
with_mask
, it should call OptimizerWithSparsityGuarantee.minimize and initialization (exe.run(startup_program)) before (For successfully obtain mask Variable). Typically set with_mask as true for training (have called OptimizerWithSparsityGuarantee.minimize) and false for inference only. To obtain OptimizerWithSparsityGuarantee, please see paddle.incubate.asp.decoreate().- Parameters
-
model (Program|nn.Layer) – Program with model definition and its parameters, or a object of paddle.nn.Layer.
n (int, optional) – n of n:m sparse pattern. Default is 2.
m (int, optional) – m of n:m sparse pattern. Default is 4.
mask_algo (string, optional) – The function name to generate spase mask. Default is mask_1d. The vaild inputs should be one of ‘mask_1d’, ‘mask_2d_greedy’ and ‘mask_2d_best’.
with_mask (bool, optional) – To prune mask Variables related to parameters or not. True is purning also, False is not. Default is True.
- Returns
-
A dictionary with key: parameter name (string) and value: its corresponding mask Variable.
- Return type
-
dictionary
Examples
Usage of Dynamic Graph
import paddle import numpy as np class MyLayer(paddle.nn.Layer): def __init__(self): super().__init__() self.conv1 = paddle.nn.Conv2D( in_channels=3, out_channels=4, kernel_size=3, padding=2) self.linear1 = paddle.nn.Linear(4624, 32) self.linear2 = paddle.nn.Linear(32, 32) self.linear3 = paddle.nn.Linear(32, 10) def forward(self, img): hidden = self.conv1(img) hidden = paddle.flatten(hidden, start_axis=1) hidden = self.linear1(hidden) hidden = self.linear2(hidden) prediction = self.linear3(hidden) return prediction my_layer = MyLayer() loss_fn = paddle.nn.MSELoss(reduction='mean') optimizer = paddle.optimizer.SGD( learning_rate=0.01, parameters=my_layer.parameters()) # Calling paddle.incubate.asp.decorate() to wrap step() in optimizer, which # will apply necessary masking operations for ASP workflow. # In dynamic graph mode, ASP would create related mask variables during decoration. optimizer = paddle.incubate.asp.decorate(optimizer) # Must call paddle.incubate.asp.decorate() first before calling paddle.incubate.asp.prune_model() paddle.incubate.asp.prune_model(my_layer, mask_algo='mask_2d_best') for i in range(10): imgs = paddle.to_tensor( np.random.randn(64, 3, 32, 32), dtype='float32', stop_gradient=False) labels = paddle.to_tensor( np.random.randint(10, size=(64, 1)), dtype='float32', stop_gradient=False) output = my_layer(imgs) loss = loss_fn(output, labels) loss.backward() optimizer.step() optimizer.clear_grad()
Usage of Static Graph
import paddle import numpy as np paddle.enable_static() class MyLayer(paddle.nn.Layer): def __init__(self): super().__init__() self.conv1 = paddle.nn.Conv2D( in_channels=3, out_channels=4, kernel_size=3, padding=2) self.linear1 = paddle.nn.Linear(4624, 32) self.linear2 = paddle.nn.Linear(32, 32) self.linear3 = paddle.nn.Linear(32, 10) def forward(self, img): hidden = self.conv1(img) hidden = paddle.flatten(hidden, start_axis=1) hidden = self.linear1(hidden) hidden = self.linear2(hidden) prediction = self.linear3(hidden) return prediction main_program = paddle.static.Program() startup_program = paddle.static.Program() with paddle.static.program_guard(main_program, startup_program): input_data = paddle.static.data(name='data', shape=[None, 3, 32, 32]) label = paddle.static.data(name='label', shape=[None, 1]) my_layer = MyLayer() prob = my_layer(input_data) loss = paddle.mean(paddle.nn.functional.square_error_cost(prob, label)) optimizer = paddle.optimizer.SGD(learning_rate=0.1) # Calling paddle.incubate.asp.decorate() to wrap minimize() in optimizer, which # will insert necessary masking operations for ASP workflow. # In static graph mode, ASP creates related mask variables # during minimize(). optimizer = paddle.incubate.asp.decorate(optimizer) optimizer.minimize(loss, startup_program) device = paddle.device.get_device() place = paddle.set_device(device) exe = paddle.static.Executor(place) exe.run(startup_program) # Must call exe.run(startup_program) first before calling paddle.asp.prune_model() paddle.incubate.asp.prune_model(my_layer, mask_algo='mask_2d_best') # it also be accepted to call # paddle.incubate.asp.prune_model(main_program, mask_algo='mask_2d_best') for i in range(10): imgs = np.random.randn(64, 3, 32, 32).astype('float32') labels = np.random.randint(10, size=(64, 1)).astype('float32') exe.run(main_program, feed={'data':imgs, 'label':labels})