amax¶
- paddle. amax ( x, axis=None, keepdim=False, name=None ) [source]
-
Computes the maximum of tensor elements over the given axis.
Note
The difference between max and amax is: If there are multiple maximum elements, amax evenly distributes gradient between these equal values, while max propagates gradient to all of them.
- Parameters
-
x (Tensor) – A tensor, the data type is float32, float64, int32, int64, the dimension is no more than 4.
axis (int|list|tuple, optional) – The axis along which the maximum is computed. If
None
, compute the maximum over all elements of x and return a Tensor with a single element, otherwise must be in the range \([-x.ndim(x), x.ndim(x))\). If \(axis[i] < 0\), the axis to reduce is \(x.ndim + axis[i]\).keepdim (bool, optional) – Whether to reserve the reduced dimension in the output Tensor. The result tensor will have one fewer dimension than the x unless
keepdim
is true, default value is False.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, results of maximum on the specified axis of input tensor, it’s data type is the same as x.
Examples
import paddle # data_x is a Tensor with shape [2, 4] with multiple maximum elements # the axis is a int element x = paddle.to_tensor([[0.1, 0.9, 0.9, 0.9], [0.9, 0.9, 0.6, 0.7]], dtype='float64', stop_gradient=False) # There are 5 maximum elements: # 1) amax evenly distributes gradient between these equal values, # thus the corresponding gradients are 1/5=0.2; # 2) while max propagates gradient to all of them, # thus the corresponding gradient are 1. result1 = paddle.amax(x) result1.backward() print(result1, x.grad) # 0.9, [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]] x.clear_grad() result1_max = paddle.max(x) result1_max.backward() print(result1_max, x.grad) # 0.9, [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]] ############################### x.clear_grad() result2 = paddle.amax(x, axis=0) result2.backward() print(result2, x.grad) #[0.9, 0.9, 0.9, 0.9], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]] x.clear_grad() result3 = paddle.amax(x, axis=-1) result3.backward() print(result3, x.grad) #[0.9, 0.9], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]] x.clear_grad() result4 = paddle.amax(x, axis=1, keepdim=True) result4.backward() print(result4, x.grad) #[[0.9], [0.9]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]] # data_y is a Tensor with shape [2, 2, 2] # the axis is list y = paddle.to_tensor([[[0.1, 0.9], [0.9, 0.9]], [[0.9, 0.9], [0.6, 0.7]]], dtype='float64', stop_gradient=False) result5 = paddle.amax(y, axis=[1, 2]) result5.backward() print(result5, y.grad) #[0.9., 0.9], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]] y.clear_grad() result6 = paddle.amax(y, axis=[0, 1]) result6.backward() print(result6, y.grad) #[0.9., 0.9], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]