VGG¶
- class paddle.vision.models. VGG ( features, num_classes=1000, with_pool=True ) [source]
-
VGG model from “Very Deep Convolutional Networks For Large-Scale Image Recognition”.
- Parameters
-
features (nn.Layer) – Vgg features create by function make_layers.
num_classes (int, optional) – Output dim of last fc layer. If num_classes <= 0, last fc layer will not be defined. Default: 1000.
with_pool (bool, optional) – Use pool before the last three fc layer or not. Default: True.
- Returns
-
Layer. An instance of VGG model.
Examples
import paddle from paddle.vision.models import VGG from paddle.vision.models.vgg import make_layers vgg11_cfg = [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'] features = make_layers(vgg11_cfg) vgg11 = VGG(features) x = paddle.rand([1, 3, 224, 224]) out = vgg11(x) print(out.shape) # [1, 1000]
-
forward
(
x
)
forward¶
-
Defines the computation performed at every call. Should be overridden by all subclasses.
- Parameters
-
*inputs (tuple) – unpacked tuple arguments
**kwargs (dict) – unpacked dict arguments