standard_normal¶
- paddle. standard_normal ( shape, dtype=None, name=None ) [source]
-
Returns a Tensor filled with random values sampled from a standard normal distribution with mean 0 and standard deviation 1, with
shape
anddtype
.- Parameters
-
shape (tuple|list|Tensor) – Shape of the Tensor to be created. The data type is
int32
orint64
. Ifshape
is a list or tuple, each element of it should be integer or 0-D Tensor with shape []. Ifshape
is an Tensor, it should be an 1-D Tensor which represents a list.dtype (str|np.dtype, optional) – The data type of the output Tensor. Supported data types: float32, float64. Default is None, use global default dtype (see
get_default_dtype
for details).name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
A Tensor filled with random values sampled from a standard normal distribution with mean 0 and standard deviation 1, with
shape
anddtype
. - Return type
-
Tensor
Examples
import paddle # example 1: attr shape is a list which doesn't contain Tensor. out1 = paddle.standard_normal(shape=[2, 3]) # [[-2.923464 , 0.11934398, -0.51249987], # random # [ 0.39632758, 0.08177969, 0.2692008 ]] # random # example 2: attr shape is a list which contains Tensor. dim1 = paddle.to_tensor(2, 'int64') dim2 = paddle.to_tensor(3, 'int32') out2 = paddle.standard_normal(shape=[dim1, dim2, 2]) # [[[-2.8852394 , -0.25898588], # random # [-0.47420555, 0.17683524], # random # [-0.7989969 , 0.00754541]], # random # [[ 0.85201347, 0.32320443], # random # [ 1.1399018 , 0.48336947], # random # [ 0.8086993 , 0.6868893 ]]] # random # example 3: attr shape is a Tensor, the data type must be int64 or int32. shape_tensor = paddle.to_tensor([2, 3]) out3 = paddle.standard_normal(shape_tensor) # [[-2.878077 , 0.17099959, 0.05111201] # random # [-0.3761474, -1.044801 , 1.1870178 ]] # random