ParameterList¶
- class paddle.nn. ParameterList ( parameters=None ) [source]
-
ParameterList Container.
This container acts like a Python list, but parameters it contains will be properly added.
- Parameters
-
parameters (iterable, optional) – Iterable Parameters to be added
Examples
import paddle class MyLayer(paddle.nn.Layer): def __init__(self, num_stacked_param): super().__init__() # create ParameterList with iterable Parameters self.params = paddle.nn.ParameterList( [paddle.create_parameter( shape=[2, 2], dtype='float32')] * num_stacked_param) def forward(self, x): for i, p in enumerate(self.params): tmp = self._helper.create_variable_for_type_inference('float32') self._helper.append_op( type="mul", inputs={"X": x, "Y": p}, outputs={"Out": tmp}, attrs={"x_num_col_dims": 1, "y_num_col_dims": 1}) x = tmp return x x = paddle.uniform(shape=[5, 2], dtype='float32') num_stacked_param = 4 model = MyLayer(num_stacked_param) print(len(model.params)) # 4 res = model(x) print(res.shape) # [5, 2] replaced_param = paddle.create_parameter(shape=[2, 3], dtype='float32') model.params[num_stacked_param - 1] = replaced_param # replace last param res = model(x) print(res.shape) # [5, 3] model.params.append(paddle.create_parameter(shape=[3, 4], dtype='float32')) # append param print(len(model.params)) # 5 res = model(x) print(res.shape) # [5, 4]
-
append
(
parameter
)
append¶
-
Appends a given parameter at the end of the list.
- Parameters
-
parameter (Parameter) – parameter to append