ESC50¶
- class paddle.audio.datasets. ESC50 ( mode: str = 'train', split: int = 1, feat_type: str = 'raw', archive=None, **kwargs ) [source]
-
The ESC-50 dataset is a labeled collection of 2000 environmental audio recordings suitable for benchmarking methods of environmental sound classification. The dataset consists of 5-second-long recordings organized into 50 semantical classes (with 40 examples per class)
- Reference:
-
ESC: Dataset for Environmental Sound Classification http://dx.doi.org/10.1145/2733373.2806390
- Parameters
-
mode (str, optional) – It identifies the dataset mode (train or dev). Default:train.
split (int, optional) – It specify the fold of dev dataset. Default:1.
feat_type (str, optional) – It identifies the feature type that user wants to extract of an audio file. Default:raw.
archive (dict, optional) – it tells where to download the audio archive. Default:None.
- Returns
-
Dataset. An instance of ESC50 dataset.
Examples
import paddle mode = 'dev' esc50_dataset = paddle.audio.datasets.ESC50(mode=mode, feat_type='raw') for idx in range(5): audio, label = esc50_dataset[idx] # do something with audio, label print(audio.shape, label) # [audio_data_length] , label_id esc50_dataset = paddle.audio.datasets.ESC50(mode=mode, feat_type='mfcc', n_mfcc=40) for idx in range(5): audio, label = esc50_dataset[idx] # do something with mfcc feature, label print(audio.shape, label) # [feature_dim, length] , label_id
- meta_info
-
alias of
paddle.audio.datasets.esc50.META_INFO