StaticRNN¶
- class paddle.static.nn. StaticRNN ( name=None ) [source]
-
- Api_attr
-
Static Graph
StaticRNN class.
The StaticRNN can process a batch of sequence data. The first dimension of inputs represents sequence length, the length of each input sequence must be equal. StaticRNN will unfold sequence into time steps, user needs to define how to process each time step during the
with
step.- Parameters
-
name (str, optional) – Please refer to Name, Default None.
Examples
import paddle import paddle.fluid as fluid import paddle.fluid.layers as layers vocab_size, hidden_size=10000, 200 paddle.enable_static() x = paddle.static.data(name="x", shape=[None, 1, 1], dtype='int64') # create word sequence x_emb = layers.embedding( input=x, size=[vocab_size, hidden_size], dtype='float32', is_sparse=False) # transform batch size to dim 1 x_emb = paddle.transpose(x_emb, perm=[1, 0, 2]) rnn = fluid.layers.StaticRNN() with rnn.step(): # mark created x_emb as input, each step process a word word = rnn.step_input(x_emb) # create prev memory parameter, batch size comes from word prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word) hidden = paddle.static.nn.fc(x=[word, prev], size=hidden_size, activation='relu') # use hidden to update prev rnn.update_memory(prev, hidden) # mark hidden as output rnn.step_output(hidden) # get StaticrNN final output result = rnn()
-
step
(
)
step¶
-
Define operators in each step. step is used in
with
block, OP inwith
block will be executed sequence_len times (sequence_len is the length of input)
-
memory
(
init=None,
shape=None,
batch_ref=None,
init_value=0.0,
init_batch_dim_idx=0,
ref_batch_dim_idx=1
)
memory¶
-
Create a memory variable for static rnn. If the
init
is not None,memory
will be initialized by this Variable. If theinit
is None,shape
andbatch_ref
must be set, and this function will create a new variable with shape and batch_ref to initializeinit
Variable.- Parameters
-
init (Variable, optional) – Tensor used to init memory. If it is not set,
shape
andbatch_ref
must be provided. Default: None.shape (list|tuple) – When
init
is None use this arg to initialize memory shape.Default (be set as batch_ref's ref_batch_dim_idx value.) – None.
batch_ref (Variable, optional) – When
init
is None, memory’s batch size willDefault – None.
init_value (float, optional) – When
init
is None, used to init memory’s value. Default: 0.0.init_batch_dim_idx (int, optional) – the batch_size axis of the
init
Variable. Default: 0.ref_batch_dim_idx (int, optional) – the batch_size axis of the
batch_ref
Variable. Default: 1.
- Returns
-
The memory variable.
- Return type
-
Variable
- Examples 1:
-
import paddle import paddle.fluid as fluid import paddle.fluid.layers as layers vocab_size, hidden_size=10000, 200 paddle.enable_static() x = paddle.static.data(name="x", shape=[None, 1, 1], dtype='int64') # create word sequence x_emb = layers.embedding( input=x, size=[vocab_size, hidden_size], dtype='float32', is_sparse=False) # transform batch size to dim 1 x_emb = paddle.transpose(x_emb, perm=[1, 0, 2]) rnn = fluid.layers.StaticRNN() with rnn.step(): # mark created x_emb as input, each step process a word word = rnn.step_input(x_emb) # create prev memory parameter, batch size comes from word prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word) hidden = paddle.static.nn.fc(x=[word, prev], size=hidden_size, activation='relu') # use hidden to update prev rnn.update_memory(prev, hidden)
- Examples 2:
-
import paddle import paddle.fluid as fluid import paddle.fluid.layers as layers vocab_size, hidden_size=10000, 200 paddle.enable_static() x = paddle.static.data(name="x", shape=[None, 1, 1], dtype='int64') # create word sequence x_emb = layers.embedding( input=x, size=[vocab_size, hidden_size], dtype='float32', is_sparse=False) # transform batch size to dim 1 x_emb = paddle.transpose(x_emb, perm=[1, 0, 2]) boot_memory = paddle.static.data(name='boot', shape=[-1, hidden_size], dtype='float32', lod_level=1) rnn = fluid.layers.StaticRNN() with rnn.step(): # mark created x_emb as input, each step process a word word = rnn.step_input(x_emb) # init memory prev = rnn.memory(init=boot_memory) hidden = paddle.static.nn.fc(x=[word, prev], size=hidden_size, activation='relu') # update hidden with prev rnn.update_memory(prev, hidden)
-
step_input
(
x
)
step_input¶
-
Mark a sequence as a StaticRNN input.
- Parameters
-
x (Variable) – The input sequence, the shape of x should be [seq_len, …].
- Returns
-
The current time step data in the input sequence.
- Return type
-
Variable
Examples
import paddle import paddle.fluid as fluid import paddle.fluid.layers as layers vocab_size, hidden_size=10000, 200 paddle.enable_static() x = paddle.static.data(name="x", shape=[None, 1, 1], dtype='int64') # create word sequence x_emb = layers.embedding( input=x, size=[vocab_size, hidden_size], dtype='float32', is_sparse=False) # transform batch size to dim 1 x_emb = paddle.transpose(x_emb, perm=[1, 0, 2]) rnn = fluid.layers.StaticRNN() with rnn.step(): # mark created x_emb as input, each step process a word word = rnn.step_input(x_emb) # create prev memory parameter, batch size comes from word prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word) hidden = paddle.static.nn.fc(x=[word, prev], size=hidden_size, activation='relu') # use hidden to update prev rnn.update_memory(prev, hidden)
-
step_output
(
o
)
step_output¶
-
Mark a sequence as a StaticRNN output.
- Parameters
-
o (Variable) – The output sequence.
- Returns
-
None.
Examples
import paddle import paddle.fluid as fluid import paddle.fluid.layers as layers vocab_size, hidden_size=10000, 200 paddle.enable_static() x = paddle.static.data(name="x", shape=[None, 1, 1], dtype='int64') # create word sequence x_emb = layers.embedding( input=x, size=[vocab_size, hidden_size], dtype='float32', is_sparse=False) # transform batch size to dim 1 x_emb = paddle.transpose(x_emb, perm=[1, 0, 2]) rnn = fluid.layers.StaticRNN() with rnn.step(): # mark created x_emb as input, each step process a word word = rnn.step_input(x_emb) # create prev memory parameter, batch size comes from word prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word) hidden = paddle.static.nn.fc(x=[word, prev], size=hidden_size, activation='relu') # use hidden to update prev rnn.update_memory(prev, hidden) rnn.step_output(hidden) result = rnn()
-
output
(
*outputs
)
output¶
-
Mark the StaticRNN output variables.
- Parameters
-
outputs – The output Tensor, can mark multiple variables as output
- Returns
-
None
Examples
import paddle import paddle.fluid as fluid import paddle.fluid.layers as layers vocab_size, hidden_size=10000, 200 paddle.enable_static() x = paddle.static.data(name="x", shape=[None, 1, 1], dtype='int64') # create word sequence x_emb = layers.embedding( input=x, size=[vocab_size, hidden_size], dtype='float32', is_sparse=False) # transform batch size to dim 1 x_emb = paddle.transpose(x_emb, perm=[1, 0, 2]) rnn = fluid.layers.StaticRNN() with rnn.step(): # mark created x_emb as input, each step process a word word = rnn.step_input(x_emb) # create prev memory parameter, batch size comes from word prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word) hidden = paddle.static.nn.fc(x=[word, prev], size=hidden_size, activation='relu') # use hidden to update prev rnn.update_memory(prev, hidden) # mark each step's hidden and word as output rnn.output(hidden, word) result = rnn()
-
update_memory
(
mem,
var
)
update_memory¶
-
Update the memory from
mem
tovar
.- Parameters
-
mem (Variable) – the memory variable.
var (Variable) – the plain variable generated in RNN block, used to update memory. var and mem should have same dims and data type.
- Returns
-
None