UtilBase

class paddle.distributed.fleet. UtilBase [source]
all_reduce ( input, mode='sum', comm_world='worker' )

all_reduce

All reduce input between specified collection. This is a distributed API.

Parameters
  • input (list|numpy.array) – The input variable to do all_reduce between specified collection.

  • mode (str) – “sum” or “min” or “max”.

  • comm_world (str, optional) – Collection used to execute all_reduce operation. Supported collections incude worker , server and all . The default is worker .

Returns

A numpy array with the same shape as the input .

Return type

output(Numpy.array|None)

Examples

# Save the following code in `train.py` , and then execute the command `fleetrun --server_num 2 --worker_num 2 train.py` .
import paddle.distributed.fleet as fleet
from paddle.distributed.fleet import PaddleCloudRoleMaker
import sys
import numpy as np
import os

os.environ["PADDLE_WITH_GLOO"] = "2"

def train():
    role = PaddleCloudRoleMaker(
        is_collective=False,
        init_gloo=True,
        path="./tmp_gloo")
    fleet.init(role)

    if fleet.is_server():
        input = [1, 2]
        output = fleet.util.all_reduce(input, "sum", "server")
        print(output)
        # [2, 4]
    elif fleet.is_worker():
        input = np.array([3, 4])
        output = fleet.util.all_reduce(input, "sum", "worker")
        print(output)
        # [6, 8]
    output = fleet.util.all_reduce(input, "sum", "all")
    print(output)
    # [8, 12]
if __name__ == "__main__":
    train()
barrier ( comm_world='worker' )

barrier

Barrier between specified collection.

Parameters

comm_world (str, optional) – Collection used to execute barrier operation. Supported collections incude worker , server and all . The default is worker .

Examples

# Save the following code in `train.py` , and then execute the command `fleetrun --server_num 2 --worker_num 2 train.py` .

import paddle.distributed.fleet as fleet
from paddle.distributed.fleet import PaddleCloudRoleMaker
import sys
import os

os.environ["PADDLE_WITH_GLOO"] = "2"

def train():
    role = PaddleCloudRoleMaker(
        is_collective=False,
        init_gloo=True,
        path="./tmp_gloo")
    fleet.init(role)

    if fleet.is_server():
        fleet.util.barrier("server")
        print("all server arrive here")
    elif fleet.is_worker():
        fleet.util.barrier("worker")
        print("all server arrive here")
    fleet.util.barrier("all")
    print("all servers and workers arrive here")

if __name__ == "__main__":
    train()
all_gather ( input, comm_world='worker' )

all_gather

All gather input between specified collection.

Parameters
  • input (Int|Float) – The input variable to do all_gather between specified collection.

  • comm_world (str, optional) – Collection used to execute all_reduce operation. Supported collections incude worker , server and all . The default is worker .

Returns

A list of gathered values.

Return type

output (List)

Examples

# Save the following code in `train.py` , and then execute the command `fleetrun --server_num 2 --worker_num 2 train.py` .
import paddle.distributed.fleet as fleet
from paddle.distributed.fleet import PaddleCloudRoleMaker
import sys
import os

os.environ["PADDLE_WITH_GLOO"] = "2"

def train():
    role = PaddleCloudRoleMaker(
        is_collective=False,
        init_gloo=True,
        path="./tmp_gloo")
    fleet.init(role)

    if fleet.is_server():
        input = fleet.server_index()
        output = fleet.util.all_gather(input, "server")
        print(output)
        # output = [0, 1]
    elif fleet.is_worker():
        input = fleet.worker_index()
        output = fleet.util.all_gather(input, "worker")
        # output = [0, 1]
        print(output)
    output = fleet.util.all_gather(input, "all")
    print(output)
    # output = [0, 1, 0, 1]

if __name__ == "__main__":
    train()
get_file_shard ( files )

get_file_shard

Split files before distributed training, and return filelist assigned to the current trainer.

example 1: files is [a, b, c ,d, e]  and trainer_num = 2, then trainer
        0 gets [a, b, c] and trainer 1 gets [d, e].
example 2: files is [a, b], and trainer_num = 3, then trainer 0 gets
        [a], trainer 1 gets [b],  trainer 2 gets []
Parameters

files (list) – File list need to be read.

Returns

Files belong to this worker.

Return type

List

Examples

import paddle.distributed.fleet as fleet
from paddle.distributed.fleet import UserDefinedRoleMaker

role = UserDefinedRoleMaker(
    is_collective=False,
    init_gloo=False,
    current_id=0,
    role=fleet.Role.WORKER,
    worker_endpoints=["127.0.0.1:6003", "127.0.0.1:6004"],
    server_endpoints=["127.0.0.1:6001", "127.0.0.1:6002"])
fleet.init(role)

files = fleet.util.get_file_shard(["file1", "file2", "file3"])
print(files)
# files = ["file1", "file2"]
print_on_rank ( message, rank_id )

print_on_rank

Woker of rank rank_id print some message.

Parameters
  • message (str) – Log to be printed.

  • rank_id (int) – trainer id.

Examples

import paddle.distributed.fleet as fleet
from paddle.distributed.fleet import UserDefinedRoleMaker

role = UserDefinedRoleMaker(
    is_collective=False,
    init_gloo=False,
    current_id=0,
    role=fleet.Role.WORKER,
    worker_endpoints=["127.0.0.1:6003", "127.0.0.1:6004"],
    server_endpoints=["127.0.0.1:6001", "127.0.0.1:6002"])
fleet.init(role)

fleet.util.print_on_rank("I'm worker 0", 0)