jvp¶
- paddle.incubate.autograd. jvp ( func, xs, v=None ) [source]
-
Computes the Jacobian-Vector product for a function at the given inputs and a vector in the tangent space induced by the inputs.
Warning
This API is in beta, the signatures could be changed in future version.
- Parameters
-
func (Callable) – The
func
takes as input a Tensor or a Sequence of Tensors and returns a Tensor or a Sequence of Tensors.xs (Tensor|Sequence[Tensor]) – Used as positional arguments to evaluate
func
. Thexs
is accepted as one Tensor or a Sequence of Tensors.v (Tensor|Sequence[Tensor]|None, Optional) – The tangent vector invovled in the JVP computation. The
v
matches the size and shape ofxs
. Default value is None and in this case is equivalent to all ones the same size ofxs
.
- Returns
-
func_out(Tensor|tuple[Tensor]): The output of
func(xs)
.jvp(Tensor|tuple[Tensor]): The jvp result.
- Return type
-
output(tuple)
Examples
import paddle def func(x): return paddle.matmul(x, x) x = paddle.ones(shape=[2, 2], dtype='float32') _, jvp_result = paddle.incubate.autograd.jvp(func, x) print(jvp_result) # Tensor(shape=[2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=False, # [[4., 4.], # [4., 4.]]) v = paddle.to_tensor([[1.0, 0.0], [0.0, 0.0]]) _, jvp_result = paddle.incubate.autograd.jvp(func, x, v) print(jvp_result) # Tensor(shape=[2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=False, # [[2., 1.], # [1., 0.]])