fused_dropout_add¶
- paddle.incubate.nn.functional. fused_dropout_add ( x, y, p=0.5, training=True, mode='upscale_in_train', name=None ) [source]
-
Fused Dropout and Add.
- Parameters
-
x (Tensor) – The input tensor. The data type is bfloat16, float16, float32 or float64.
y (Tensor) – The input tensor. The data type is bfloat16, float16, float32 or float64.
p (float|int, optional) – Probability of setting units to zero. Default: 0.5.
training (bool, optional) – A flag indicating whether it is in train phrase or not. Default: True.
mode (str, optional) –
[‘upscale_in_train’(default) | ‘downscale_in_infer’].
upscale_in_train (default), upscale the output at training time
train: \(out = x \times \frac{mask}{(1.0 - dropout\_prob)} + y\)
inference: \(out = x + y\)
downscale_in_infer, downscale the output at inference
train: \(out = input \times mask + y\)
inference: \(out = input \times (1.0 - dropout\_prob) + y\)
name (str, optional) – Name for the operation, Default: None. For more information, please refer to Name.
- Returns
-
A Tensor representing the fused dropout and add, has same shape and data type as x .
Examples
# required: gpu import paddle from paddle.incubate.nn.functional import fused_dropout_add x = paddle.randn([4, 10], dtype='float16') y = paddle.randn([4, 10], dtype='float16') out = fused_dropout_add(x, y, p=0.5)