XavierNormal¶
- class paddle.nn.initializer. XavierNormal ( fan_in=None, fan_out=None, name=None ) [source]
-
This class implements the Xavier weight initializer from the paper Understanding the difficulty of training deep feedforward neural networks by Xavier Glorot and Yoshua Bengio, using a normal distribution whose mean is \(0\) and standard deviation is
\[\sqrt{\frac{2.0}{fan\_in + fan\_out}}.\]- Parameters
-
fan_in (float, optional) – fan_in for Xavier initialization, which is inferred from the Tensor. Default is None.
fan_out (float, optional) – fan_out for Xavier initialization, which is inferred from the Tensor. Default is None.
name (str, optional) – For details, please refer to Name. Generally, no setting is required. Default: None.
- Returns
-
A parameter initialized by Xavier weight, using a normal distribution.
Examples
import paddle data = paddle.ones(shape=[3, 1, 2], dtype='float32') weight_attr = paddle.framework.ParamAttr( name="linear_weight", initializer=paddle.nn.initializer.XavierNormal()) bias_attr = paddle.framework.ParamAttr( name="linear_bias", initializer=paddle.nn.initializer.XavierNormal()) linear = paddle.nn.Linear(2, 2, weight_attr=weight_attr, bias_attr=bias_attr) # inear.weight: [[ 0.06910077 -0.18103665] # [-0.02546741 -1.0402188 ]] # linear.bias: [-0.5012929 0.12418364] res = linear(data) # res: [[[-0.4576595 -1.0970719]] # [[-0.4576595 -1.0970719]] # [[-0.4576595 -1.0970719]]]