rand¶
- paddle. rand ( shape, dtype=None, name=None ) [source]
-
Returns a Tensor filled with random values sampled from a uniform distribution in the range [0, 1), with
shape
anddtype
.- Parameters
-
shape (tuple|list|Tensor) – Shape of the Tensor to be created. The data type is
int32
orint64
. Ifshape
is a list or tuple, each element of it should be integer or 0-D Tensor with shape []. Ifshape
is an Tensor, it should be an 1-D Tensor which represents a list.dtype (str|np.dtype, optional) – The data type of the output Tensor. Supported data types: float32, float64. Default is None, use global default dtype (see
get_default_dtype
for details).name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
A Tensor filled with random values sampled from a uniform distribution in the range [0, 1), with
shape
anddtype
. - Return type
-
Tensor
Examples
import paddle # example 1: attr shape is a list which doesn't contain Tensor. out1 = paddle.rand(shape=[2, 3]) # [[0.451152 , 0.55825245, 0.403311 ], # random # [0.22550228, 0.22106001, 0.7877319 ]] # random # example 2: attr shape is a list which contains Tensor. dim1 = paddle.to_tensor(2, 'int64') dim2 = paddle.to_tensor(3, 'int32') out2 = paddle.rand(shape=[dim1, dim2, 2]) # [[[0.8879919 , 0.25788337], # random # [0.28826773, 0.9712097 ], # random # [0.26438272, 0.01796806]], # random # [[0.33633623, 0.28654453], # random # [0.79109055, 0.7305809 ], # random # [0.870881 , 0.2984597 ]]] # random # example 3: attr shape is a Tensor, the data type must be int64 or int32. shape_tensor = paddle.to_tensor([2, 3]) out3 = paddle.rand(shape_tensor) # [[0.22920267, 0.841956 , 0.05981819], # random # [0.4836288 , 0.24573246, 0.7516129 ]] # random