normalize¶
- paddle.vision.transforms. normalize ( img, mean, std, data_format='CHW', to_rgb=False ) [source]
-
Normalizes a tensor or image with mean and standard deviation.
- Parameters
-
img (PIL.Image|np.array|paddle.Tensor) – input data to be normalized.
mean (list|tuple) – Sequence of means for each channel.
std (list|tuple) – Sequence of standard deviations for each channel.
data_format (str, optional) – Data format of input img, should be ‘HWC’ or ‘CHW’. Default: ‘CHW’.
to_rgb (bool, optional) – Whether to convert to rgb. If input is tensor, this option will be igored. Default: False.
- Returns
-
Normalized mage. Data format is same as input img.
- Return type
-
np.ndarray or Tensor
Examples
import numpy as np from PIL import Image from paddle.vision.transforms import functional as F fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8') fake_img = Image.fromarray(fake_img) mean = [127.5, 127.5, 127.5] std = [127.5, 127.5, 127.5] normalized_img = F.normalize(fake_img, mean, std, data_format='HWC') print(normalized_img.max(), normalized_img.min())