Assign¶
- class paddle.nn.initializer. Assign ( value, name=None ) [source]
-
Init an parameter with a numpy array, list, or tensor.
- Parameters
-
value (Tensor|numpy.ndarray|list|tuple) – numpy array, list, tuple, or tensor to initialize the parameter.
name (str, optional) – Normally there is no need for user to set this property. For more information, please refer to Name. Default is None.
- Returns
-
A parameter initialized by the input numpy array, list, or tensor.
Examples
import paddle import numpy as np # numpy array data_1 = paddle.ones(shape=[1, 2], dtype='float32') weight_attr_1 = paddle.framework.ParamAttr( name="linear_weight_1", initializer=paddle.nn.initializer.Assign(np.array([2, 2]))) bias_attr_1 = paddle.framework.ParamAttr( name="linear_bias_1", initializer=paddle.nn.initializer.Assign(np.array([2]))) linear_1 = paddle.nn.Linear(2, 2, weight_attr=weight_attr_1, bias_attr=bias_attr_1) # linear_1.weight: [2. 2.] # linear_1.bias: [2.] res_1 = linear_1(data_1) # res_1: [6.] # python list data_2 = paddle.ones(shape=[1, 2], dtype='float32') weight_attr_2 = paddle.framework.ParamAttr( name="linear_weight_2", initializer=paddle.nn.initializer.Assign([2, 2])) bias_attr_2 = paddle.framework.ParamAttr( name="linear_bias_2", initializer=paddle.nn.initializer.Assign([2])) linear_2 = paddle.nn.Linear(2, 2, weight_attr=weight_attr_2, bias_attr=bias_attr_2) # linear_2.weight: [2. 2.] # linear_2.bias: [2.] res_2 = linear_2(data_2) # res_2: [6.] # tensor data_3 = paddle.ones(shape=[1, 2], dtype='float32') weight_attr_3 = paddle.framework.ParamAttr( name="linear_weight_3", initializer=paddle.nn.initializer.Assign(paddle.full([2], 2))) bias_attr_3 = paddle.framework.ParamAttr( name="linear_bias_3", initializer=paddle.nn.initializer.Assign(paddle.full([1], 2))) linear_3 = paddle.nn.Linear(2, 2, weight_attr=weight_attr_3, bias_attr=bias_attr_3) # linear_3.weight: [2. 2.] # linear_3.bias: [2.] res_3 = linear_3(data_3) # res_3: [6.]