RNNTLoss¶
- class paddle.nn. RNNTLoss ( blank=0, fastemit_lambda=0.001, reduction='mean', name=None ) [source]
-
- Parameters
-
blank (int, optional) – blank label. Default: 0.
fastemit_lambda (float, optional) – Regularization parameter for FastEmit (https://arxiv.org/pdf/2010.11148.pdf)
reduction (string, optional) – Specifies the reduction to apply to the output: ‘none’ | ‘mean’ | ‘sum’. ‘none’: no reduction will be applied, ‘mean’: the output losses will be divided by the target lengths and then the mean over the batch is taken. Default: ‘mean’
- Shape:
-
input: logprob Tensor of (batch x seqLength x labelLength x outputDim) containing output from network label: 2 dimensional (batch, labelLength) Tensor containing all the targets of the batch with zero padded input_lengths: Tensor of size (batch) containing size of each output sequence from the network label_lengths: Tensor of (batch) containing label length of each example
- Returns
-
reduction is
'none'
, the shape of loss is [batch_size], otherwise, the shape of loss is []. Data type is the same aslogprobs
. - Return type
-
Tensor, The RNN-T loss between
logprobs
andlabels
. If attr
Examples
# declarative mode import numpy as np import paddle from paddle.nn import RNNTLoss fn = RNNTLoss(reduction='sum', fastemit_lambda=0.0) acts = np.array([[[[0.1, 0.6, 0.1, 0.1, 0.1], [0.1, 0.1, 0.6, 0.1, 0.1], [0.1, 0.1, 0.2, 0.8, 0.1]], [[0.1, 0.6, 0.1, 0.1, 0.1], [0.1, 0.1, 0.2, 0.1, 0.1], [0.7, 0.1, 0.2, 0.1, 0.1]]]]) labels = [[1, 2]] acts = paddle.to_tensor(acts, stop_gradient=False) lengths = [acts.shape[1]] * acts.shape[0] label_lengths = [len(l) for l in labels] labels = paddle.to_tensor(labels, paddle.int32) lengths = paddle.to_tensor(lengths, paddle.int32) label_lengths = paddle.to_tensor(label_lengths, paddle.int32) costs = fn(acts, labels, lengths, label_lengths) print(costs) # Tensor(shape=[], dtype=float64, place=Place(gpu:0), stop_gradient=False, # 4.49566677)
-
forward
(
input,
label,
input_lengths,
label_lengths
)
forward¶
-
Defines the computation performed at every call. Should be overridden by all subclasses.
- Parameters
-
*inputs (tuple) – unpacked tuple arguments
**kwargs (dict) – unpacked dict arguments