eigh¶
- paddle.linalg. eigh ( x, UPLO='L', name=None ) [source]
-
Compute the eigenvalues and eigenvectors of a complex Hermitian (conjugate symmetric) or a real symmetric matrix.
- Parameters
-
x (Tensor) – A tensor with shape \([*, N, N]\) , The data type of the input Tensor x should be one of float32, float64, complex64, complex128.
UPLO (str, optional) – (string, default ‘L’), ‘L’ represents the lower triangular matrix, “‘U’ represents the upper triangular matrix.”.
name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name.
- Returns
-
- A Tensor with shape [ *, N] and data type of float32 and float64.
-
The eigenvalues of eigh op.
-
- out_vector(Tensor): A Tensor with shape [ *, N, N] and data type of float32,float64,
-
complex64 and complex128. The eigenvectors of eigh op.
- Return type
-
out_value(Tensor)
Examples
import paddle x = paddle.to_tensor([[1, -2j], [2j, 5]]) out_value, out_vector = paddle.linalg.eigh(x, UPLO='L') print(out_value) #[0.17157288, 5.82842712] print(out_vector) #[(-0.9238795325112867+0j), (-0.3826834323650898+0j)], #[ 0.3826834323650898j , -0.9238795325112867j ]]