standard_normal¶
返回符合标准正态分布(均值为 0,标准差为 1 的正态随机分布)的随机 Tensor,形状为 shape
,数据类型为 dtype
。
参数¶
shape (list|tuple|Tensor) - 生成的随机 Tensor 的形状。如果
shape
是 list、tuple,则其中的元素可以是 int,或者是形状为[]且数据类型为 int32、int64 的 0-D Tensor。如果shape
是 Tensor,则是数据类型为 int32、int64 的 1-D Tensor。dtype (str|np.dtype,可选) - 输出 Tensor 的数据类型,支持 float32、float64。当该参数值为 None 时,输出 Tensor 的数据类型为 float32。默认值为 None。
name (str,可选) - 具体用法请参见 Name,一般无需设置,默认值为 None。
返回¶
Tensor:符合标准正态分布的随机 Tensor,形状为
shape
,数据类型为dtype
。
示例代码¶
import paddle
# example 1: attr shape is a list which doesn't contain Tensor.
out1 = paddle.standard_normal(shape=[2, 3])
# [[-2.923464 , 0.11934398, -0.51249987], # random
# [ 0.39632758, 0.08177969, 0.2692008 ]] # random
# example 2: attr shape is a list which contains Tensor.
dim1 = paddle.to_tensor(2, 'int64')
dim2 = paddle.to_tensor(3, 'int32')
out2 = paddle.standard_normal(shape=[dim1, dim2, 2])
# [[[-2.8852394 , -0.25898588], # random
# [-0.47420555, 0.17683524], # random
# [-0.7989969 , 0.00754541]], # random
# [[ 0.85201347, 0.32320443], # random
# [ 1.1399018 , 0.48336947], # random
# [ 0.8086993 , 0.6868893 ]]] # random
# example 3: attr shape is a Tensor, the data type must be int64 or int32.
shape_tensor = paddle.to_tensor([2, 3])
out3 = paddle.standard_normal(shape_tensor)
# [[-2.878077 , 0.17099959, 0.05111201] # random
# [-0.3761474, -1.044801 , 1.1870178 ]] # random