load

paddle. load ( path, **configs ) [源代码]

从指定路径载入可以在 paddle 中使用的对象实例。

注解

目前支持载入:Layer 或者 Optimizer 的 state_dict,Tensor 以及包含 Tensor 的嵌套 list、tuple、dict、Program。对于 Tensor 对象,只保存了它的名字和数值,没有保存 stop_gradient 等属性,如果您需要这些没有保存的属性,请调用 set_value 接口将数值设置到带有这些属性的 Tensor 中。

遇到使用问题,请参考:

参数

  • path (str|BytesIO) - 载入目标对象实例的路径/内存对象。通常该路径是目标文件的路径,当从用于存储预测模型 API 的存储结果中载入 state_dict 时,该路径可能是一个文件前缀或者目录。

  • **configs (dict,可选) - 其他用于兼容的载入配置选项。这些选项将来可能被移除,如果不是必须使用,不推荐使用这些配置选项。默认为 None。目前支持以下配置选项:

      1. model_filename (str) - paddle 1.x 版本 save_inference_model 接口存储格式的预测模型文件名,原默认文件名为 __model__

      1. params_filename (str) - paddle 1.x 版本 save_inference_model 接口存储格式的参数文件名,没有默认文件名,默认将各个参数分散存储为单独的文件;

      1. return_numpy(bool) - 如果被指定为 Trueload 的结果中的 Tensor 会被转化为 numpy.ndarray,默认为 False

返回

Object,一个可以在 paddle 中使用的对象实例。

代码示例 1

 # example 1: dynamic graph
 import paddle
 emb = paddle.nn.Embedding(10, 10)
 layer_state_dict = emb.state_dict()

 # save state_dict of emb
 paddle.save(layer_state_dict, "emb.pdparams")

 scheduler = paddle.optimizer.lr.NoamDecay(
     d_model=0.01, warmup_steps=100, verbose=True)
 adam = paddle.optimizer.Adam(
     learning_rate=scheduler,
     parameters=emb.parameters())
 opt_state_dict = adam.state_dict()

 # save state_dict of optimizer
 paddle.save(opt_state_dict, "adam.pdopt")
 # save weight of emb
 paddle.save(emb.weight, "emb.weight.pdtensor")

 # load state_dict of emb
 load_layer_state_dict = paddle.load("emb.pdparams")
 # load state_dict of optimizer
 load_opt_state_dict = paddle.load("adam.pdopt")
 # load weight of emb
 load_weight = paddle.load("emb.weight.pdtensor")

代码示例 2

 # example 2: Load multiple state_dict at the same time
 import paddle
 from paddle import nn
 from paddle.optimizer import Adam

 layer = paddle.nn.Linear(3, 4)
 adam = Adam(learning_rate=0.001, parameters=layer.parameters())
 obj = {'model': layer.state_dict(), 'opt': adam.state_dict(), 'epoch': 100}
 path = 'example/model.pdparams'
 paddle.save(obj, path)
 obj_load = paddle.load(path)

代码示例 3

 # example 3: static graph
 import paddle
 import paddle.static as static

 paddle.enable_static()

 # create network
 x = paddle.static.data(name="x", shape=[None, 224], dtype='float32')
 z = paddle.static.nn.fc(x, 10)

 place = paddle.CPUPlace()
 exe = paddle.static.Executor(place)
 exe.run(paddle.static.default_startup_program())
 prog = paddle.static.default_main_program()
 for var in prog.list_vars():
     if list(var.shape) == [224, 10]:
         tensor = var.get_value()
         break

 # save/load tensor
 path_tensor = 'temp/tensor.pdtensor'
 paddle.save(tensor, path_tensor)
 load_tensor = paddle.load(path_tensor)

 # save/load state_dict
 path_state_dict = 'temp/model.pdparams'
 paddle.save(prog.state_dict("param"), path_tensor)
 load_state_dict = paddle.load(path_tensor)

代码示例 4

 # example 4: load program
 import paddle

 paddle.enable_static()

 data = paddle.static.data(
     name='x_static_save', shape=(None, 224), dtype='float32')
 y_static = z = paddle.static.nn.fc(data, 10)
 main_program = paddle.static.default_main_program()
 path = "example/main_program.pdmodel"
 paddle.save(main_program, path)
 load_main = paddle.load(path)
 print(load_main)

代码示例 5

 # example 5: save object to memory
 from io import BytesIO
 import paddle
 from paddle.nn import Linear
 paddle.disable_static()

 linear = Linear(5, 10)
 state_dict = linear.state_dict()
 byio = BytesIO()
 paddle.save(state_dict, byio)
 tensor = paddle.randn([2, 3], dtype='float32')
 paddle.save(tensor, byio)
 byio.seek(0)
 # load state_dict
 dict_load = paddle.load(byio)